Back to Archived Journals » Reports in Electrochemistry » Volume 2

Microbial fuel cell with a polypyrrole/poly(methylene blue) composite electrode

Authors Godwin, Evitts, Kennell G

Received 3 May 2012

Accepted for publication 23 July 2012

Published 19 September 2012 Volume 2012:2 Pages 3—11


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Download Article [PDF] 

Jonathan M Godwin, Richard W Evitts, Glyn F Kennell

Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract: Different configurations of anodic and cathodic half-cells were incorporated into a microbial fuel cell to determine the effectiveness of a composite electrode. This novel composite electrode consisted of poly(methylene blue) and polypyrrole electrodeposited onto a stainless steel electrode. The novel electrode/immobilized mediator was incorporated into a microbial cathodic half-cell that relied on the microalgae Chlorella vulgaris for photosynthesis, and was a net reducer of carbon dioxide. Similar microbial cathodic half-cells were also examined using electrodes fabricated from graphite and graphite deposited with methylene blue. Results from using these three different electrodes in the microbial cathodic half-cell were examined and compared with the results from others. The electrode using the novel immobilized mediator demonstrated the highest short circuit current density of 65 mA/m2 when compared with other C. vulgaris systems. Different anodic half-cells were also incorporated into the microbial fuel cell and tested. Anodic half-cells tested included a microbial half-cell containing Saccharomyces cerevisiae and one containing no microbial material and based on purely chemical constituents. In the case of the microbial anodic half-cell, different electrodes, including the novel immobilized mediator/electrode, were tested. It was found that the anodic half-cell performed better with a soluble mediator than an immobilized mediator/electrode. In the case of a fuel cell where both the anodic and cathodic half-cells are microbial, our results demonstrate better performance than previous systems by using a soluble mediator in the anodic half-cell with an immobilized mediator in the cathodic half-cell.

Keywords: microbial fuel cell, biocathode, immobilized mediator, stainless steel electrode

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]