Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Mechanism of enhanced oral absorption of hydrophilic drug incorporated in hydrophobic nanoparticles

Authors Lv LZ, Tong CQ, Yu J, Han M, Gao JQ

Received 30 April 2013

Accepted for publication 14 June 2013

Published 29 July 2013 Volume 2013:8(1) Pages 2709—2717

DOI https://doi.org/10.2147/IJN.S47400

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 6

Liang-Zhong Lv,1 Chen-Qi Tong,1 Jia Yu,1 Min Han,2 Jian-Qing Gao2

1Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China; 2Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China

Abstract: Hydroxysafflor yellow A (HSYA) is an effective ingredient of the Chinese herb Carthamus tinctorius L, which has high water solubility and low oral bioavailability. This research aims to develop a hydrophobic nanoparticle that can enhance the oral absorption of HSYA. Transmission electron microscopy and freeze-fracture replication transmission election microscopy showed that the HSYA nanoparticles have an irregular shape and a narrow size distribution. Zonula occludens 1 protein (ZO–1) labeling showed that the nanoparticles with different dilutions produced an opening in the tight junctions of Caco-2 cells without inducing cytotoxicity to the cells. Both enhanced uptake in Caco-2 cells monolayer and increased bioavailability in rats for HSYA nanoparticles indicated that the formulation could improve bioavailability of HSYA significantly after oral administration both in vitro and in vivo.

Keywords: hydroxysafflor yellow A, nanoparticles, Caco-2 cells, bioavailability, absorption

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

Sarker SR, Aoshima Y, Hokama R, Inoue T, Sou K, Takeoka S

International Journal of Nanomedicine 2013, 8:1361-1375

Published Date: 10 April 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

Lu X, Xia Y, Liu M, Qian Y, Zhou X, Gu N, Zhang F

International Journal of Nanomedicine 2012, 7:2153-2164

Published Date: 24 April 2012

Evaluation of pain associated with facial injections using CoolSkin® in rhytidectomy

Taghizadeh F, Ellison T, Traylor-Knowles M

Journal of Pain Research 2011, 4:309-313

Published Date: 29 September 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010