Back to Journals » Nature and Science of Sleep » Volume 10

Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing

Authors Nilius G, Domanski U, Schroeder M, Woehrle H, Graml A, Franke KJ

Received 4 December 2017

Accepted for publication 21 December 2017

Published 1 May 2018 Volume 2018:10 Pages 135—142


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Steven A Shea

Georg Nilius,1,2 Ulrike Domanski,1 Maik Schroeder,1 Holger Woehrle,3,4 Andrea Graml,4 Karl-Josef Franke,1,2

1Helios Klinik Hagen-Ambrock, Department of Pneumology, Hagen, Germany; 2Department of Internal Medicine, Witten-Herdecke University, Witten, Germany; 3Sleep and Ventilation Center Blaubeuren, Respiratory Center Ulm, Ulm, Germany; 4ResMed Science Center, ResMed Germany, Martinsried, Germany

Purpose: Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing.
Methods: CPAP (8 and 12 cmH2O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter.
Results: The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH (< 0.05) in the presence and absence of mouth leak. There were no significant differences in aH between HH and CL. However, in-mask temperature during CL was higher (p < 0.05) and rH lower than during HH. In winter, CPAP with CL was more likely to keep rH constant at 80% than CPAP without humidification or with standard HH.
Conclusion: Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

Keywords: continuous positive airway pressure, humidification, temperature, leakage

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]