Back to Journals » International Journal of Nanomedicine » Volume 16

Magnetic Particle Imaging: In vitro Signal Analysis and Lumen Quantification of 21 Endovascular Stents

Authors Wegner F, von Gladiss A, Haegele J, Grzyska U, Sieren MM, Stahlberg E, Oechtering TH, Lüdtke-Buzug K, Barkhausen J, Buzug TM, Friedrich T

Received 1 October 2020

Accepted for publication 11 December 2020

Published 11 January 2021 Volume 2021:16 Pages 213—221


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Israel (Rudi) Rubinstein

Franz Wegner,1,* Anselm von Gladiss,2,* Julian Haegele,1,3 Ulrike Grzyska,1 Malte Maria Sieren,1 Erik Stahlberg,1 Thekla Helene Oechtering,1 Kerstin Lüdtke-Buzug,2 Joerg Barkhausen,1 Thorsten M Buzug,2,4 Thomas Friedrich2,4

1Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany; 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany; 3Zentrum für Radiologie und Nuklearmedizin Rheinland, Dormagen, Germany; 4Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany

*These authors contributed equally to this work

Correspondence: Franz Wegner
University Hospital Schleswig-Holstein, Campus Lübeck, Department of Radiology and Nuclear Medicine, Ratzeburger Allee 160, Lübeck 23538, Germany
Tel +004945150017001
Fax +004945150017004

Purpose: Endovascular stents are medical devices, which are implanted in stenosed blood vessels to ensure sufficient blood flow. Due to a high rate of in-stent re-stenoses, there is the need of a noninvasive imaging method for the early detection of stent occlusion. The evaluation of the stent lumen with computed tomography (CT) and magnetic resonance imaging (MRI) is limited by material-induced artifacts. The purpose of this work is to investigate the potential of the tracer-based modality magnetic particle imaging (MPI) for stent lumen visualization and quantification.
Methods: In this in vitro study, 21 endovascular stents were investigated in a preclinical MPI scanner. Therefore, the stents were implanted in vessel phantoms. For the signal analysis, the phantoms were scanned without tracer material, and the signal-to-noise-ratio was analyzed. For the evaluation of potential artifacts and the lumen quantification, the phantoms were filled with diluted tracer agent. To calculate the stent lumen diameter a calibrated threshold value was applied.
Results: We can show that it is possible to visualize the lumen of a variety of endovascular stents without material induced artifacts, as the stents do not generate sufficient signals in MPI. The stent lumen quantification showed a direct correlation between the calculated and nominal diameter (r = 0.98).
Conclusion: In contrast to MRI and CT, MPI is able to visualize and quantify stent lumina very accurately.

Keywords: magnetic particle imaging, endovascular stents, artifacts, superparamagnetic iron oxide nanoparticles, lumen quantification

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]