Back to Journals » International Journal of Nanomedicine » Volume 13

Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample

Authors Yu F, Xiong YM, Yu SC, He LL, Niu SS, Wu YM, Liu J, Qu LB, Liu LE, Wu YJ

Received 27 September 2017

Accepted for publication 7 December 2017

Published 17 January 2018 Volume 2018:13 Pages 429—437

DOI https://doi.org/10.2147/IJN.S152618

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Alexander Kharlamov

Peer reviewer comments 4

Editor who approved publication: Dr Linlin Sun


Fei Yu,1,* Ya-min Xiong,1,* Song-cheng Yu,1 Lei-liang He,1 Shan-shan Niu,1 Yu-ming Wu,1 Jie Liu,1 Ling-bo Qu,2 Li-e Liu,1 Yong-jun Wu1

1College of Public Health, 2College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China

*These authors contributed equally to this work

Background: DNA methyltransferase 1 (DNMT1), a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase) detection have focused on the prokaryote MTase and its activity.
Methods: A magnetic fluorescence-linked immunosorbent assay (FLISA) using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized.
Results: Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1–1,500 ng/mL, the recovery was 91.67%–106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%–11.29% and 7.03%–11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA) kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001). The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter than ELISA kits.
Conclusion: These indicated that the proposed FLISA method was sensitive and high throughput and can quickly screen the level of DNMT1 in serum samples.

Keywords: DNA methyltransferase 1, quantum dots, fluorescence immunoassay, magnetic carboxyl beads, high throughput, serum sample

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]