Back to Journals » International Journal of Nanomedicine » Volume 5

Local gene delivery via endovascular stents coated with dodecylated chitosan–plasmid DNA nanoparticles

Authors Zhu D, Xu Jin, Leng X, Hai Wang, Junbo Bao, Liu W, Yao K, Song C

Published 6 December 2010 Volume 2010:5 Pages 1095—1102

DOI https://doi.org/10.2147/IJN.S14358

Review by Single-blind

Peer reviewer comments 2


Dunwan Zhu1*, Xu Jin2*, Xigang Leng1, Hai Wang1, Junbo Bao1, Wenguang Liu3, Kangde Yao3, Cunxian Song1
1Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; 2Department of Anesthesia and Pain Therapy, Capital Medical University Affiliated Beijing Tiantan Hospital, Beijing, China; 3Research Institute of Polymeric Materials, Tianjin University, Tianjin, China; *Both investigators contributed equally to this work and are senior authors.

Abstract: Development of efficacious therapeutic strategies to prevent and inhibit the occurrences of restenosis after percutaneous transluminal coronary angioplasty is critical for the treatment of cardiovascular diseases. In this study, the feasibility and efficiency of stents coated with dodecylated chitosan–plasmid DNA nanoparticles (DCDNPs) were evaluated as scaffolds for localized and prolonged delivery of reporter genes into the diseased blood vessel wall. Dodecylated chitosan–plasmid DNA complexes formed stable positive charged nanospheres with mean diameter of approximately 90–180 nm and zeta potential of +28 ± 3 mV. As prepared DCDNPs were spray-coated on stents, a thin layer of dense DCDNPs was successfully distributed onto the metal struts of the endovascular stents as demonstrated by scanning electron microscopy. The DCDNP stents were characterized for the release kinetics of plasmid DNA, and further evaluated for gene delivery and expression both in vitro and in vivo. In cell culture, DCDNP stents containing plasmid EGFP-C1 exhibited high level of GFP expression in cells grown on the stent surface and along the adjacent area. In animal studies, reporter gene activity was observed in the region of the artery in contact with the DCDNP stents, but not in adjacent arterial segments or distal organs. The DCDNP stent provides a very promising strategy for cardiovascular gene therapy.

Keywords: gene delivery, endovascular stent, chitosan, gene nanoparticles

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]