Back to Journals » International Journal of Nanomedicine » Volume 15

Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity

Authors Shi C, Wu H, Xu K, Cai T, Qin K, Wu L, Cai B

Received 23 October 2019

Accepted for publication 1 February 2020

Published 17 February 2020 Volume 2020:15 Pages 1101—1115


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster

Changcan Shi,1,* Hongjuan Wu,2,* Ke Xu,3 Ting Cai,3 Kunming Qin,4 Li Wu,1 Baochang Cai1,4

1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, People’s Republic of China; 2Nanjing Jiangning District Hospital of Traditional Chinese Medicine, Nanjing 211100, People’s Republic of China; 3School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China; 4Nanjing Haichang Chinese Medicine Group Corporation, Nanjing 210061, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Li Wu
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, People’s Republic of China

Baochang Cai
School of Pharmacy Nanjing University of Chinese Medicine, Nanjing 210046, People’s Republic of China

Background: The clinical use of doxorubicin (DOX) is severely limited due to its cardiotoxicity. Thus, there is a need for prophylactic and treatment strategies against DOX-induced cardiotoxicity.
Purpose: The purpose of this study was to develop a liquiritigenin-loaded submicron emulsion (Lq-SE) with enhanced oral bioavailability and to explore its efficacy against DOX-induced cardiotoxicity.
Methods: Lq-SE was prepared using high-pressure homogenization and characterized using several analytical techniques. The formulation was optimized by central composite design response surface methodology (CCD-RSM). In vivo pharmacokinetic studies, biochemical analyses, reactive oxygen species (ROS) assays, histopathologic assays, and Western blot analyses were performed.
Results: Each Lq-SE droplet had a mean particle size of 221.7 ± 5.80 nm, a polydispersity index (PDI) of 0.106 ± 0.068 and a zeta potential of − 28.23 ± 0.42 mV. The area under the curve (AUC) of Lq-SE was 595% higher than that of liquiritigenin (Lq). Lq-SE decreased the release of serum cardiac enzymes and ameliorated histopathological changes in the hearts of DOX-challenged mice. Lq-SE significantly reduced oxidative stress by adjusting the levels of ROS, increasing the activity of antioxidative enzymes and inhibiting the protein expression of NOX4 and NOX2. Furthermore, Lq-SE significantly improved the inflammatory response through the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signalling pathway and induced cardiomyocyte apoptosis.
Conclusion: Lq-SE could be used as an effective cardioprotective agent against DOX in chemotherapy to enable better treatment outcomes.

Keywords: liquiritigenin, submicron emulsion, bioavailability, cardiotoxicity, protective efficacy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]