Back to Journals » Clinical Pharmacology: Advances and Applications » Volume 6

Lack of effect of ezogabine/retigabine on the pharmacokinetics of digoxin in healthy individuals: results from a drug–drug interaction study

Authors Tompson D, Crean C, Buraglio M, Arumugham T

Received 15 March 2014

Accepted for publication 4 June 2014

Published 13 October 2014 Volume 2014:6 Pages 149—159


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Debra J Tompson,1 Christopher S Crean,2 Mauro Buraglio,1 Thangam Arumugham3

1Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Stevenage, Hertfordshire, UK; 2Clinical Pharmacology and Pharmacokinetics, Valeant Pharmaceuticals North America, Durham, NC, USA; 3Clinical Statistics, GlaxoSmithKline, Raleigh-Durham, NC, USA

Introduction: The potential for ezogabine/retigabine (EZG/RTG) and its N-acetyl metabolite (NAMR) to inhibit the transporter protein P-glycoprotein-(P-gp)-mediated digoxin transport was tested in vitro. EZG/RTG did not inhibit P-gp. However, NAMR inhibited P-gp in a concentration-dependent manner. Based on these in vitro results, NAMR had the potential to inhibit P-gp at therapeutic doses of EZG/RTG (600–1,200 mg/day). As digoxin has a narrow therapeutic index, inhibition of digoxin clearance may have an impact on its safety.
Methods: An open-label, single-center, two session, fixed-sequence study was conducted to assess the effect of co-administration of therapeutic doses of EZG/RTG on digoxin pharmacokinetics in healthy adults. In session 1, subjects received a single dose of digoxin 0.25 mg. In session 2, EZG/RTG was up-titrated over 6 weeks. Digoxin 0.25 mg was co-administered at EZG/RTG steady-state doses of 600, 900, and, based on tolerability, 1,050/1,200 mg/day. Blood samples were collected over 144 hours for determination of digoxin, EZG/RTG, and NAMR concentrations. Urine samples were collected over 48 hours for determination of digoxin concentrations.
Results: Of 30 subjects enrolled, 29 were included in the pharmacokinetic analysis. Compared with digoxin alone, co-administration with EZG/RTG led to small increases in the digoxin plasma area under the concentration–time curve (AUC)0–120 at doses of 600, 900, and 1,050/1,200 mg (geometric mean ratio 1.08, 90% confidence interval [CI] 1.01–1.15; 1.18, 90% CI 1.10–1.27; 1.13, 90% CI 1.05–1.21, respectively). Safety was consistent with previous repeat-dose studies of EZG/RTG in healthy subjects.
Conclusion: Co-administration of EZG/RTG across the therapeutic range resulted in small, non-dose-dependent and non-clinically relevant increases in digoxin systemic exposure, suggesting that digoxin dose adjustment is not necessary.

Keywords: digoxin, retigabine, ezogabine, drug–drug interactions

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]