Back to Journals » International Journal of Nanomedicine » Volume 6

Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells

Authors Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E

Published 26 October 2011 Volume 2011:6 Pages 2591—2605

DOI https://doi.org/10.2147/IJN.S24552

Review by Single-blind

Peer reviewer comments 4

Simona Mura1,2, Herve Hillaireau1,2, Julien Nicolas1,2, Benjamin Le Droumaguet1,2, Claire Gueutin1,2, Sandrine Zanna3, Nicolas Tsapis1,2, Elias Fattal1,2
1Univ Paris-Sud, UMR 8612, Châtenay Malabry, F-92296; 2CNRS, Châtenay Malabry, F-92296; 3Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superiore de Chimie de Paris, France

Background: Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells.
Methods: Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers.
Results: Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles.
Conclusion: These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines.

Keywords: nanoparticles, PLGA, surface properties, Calu-3, toxicity, inflammation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Optimal delivery of male breast cancer follow-up care: improving outcomes

Ferzoco RM, Ruddy KJ

Breast Cancer: Targets and Therapy 2015, 7:371-379

Published Date: 23 November 2015

Advances in cancer pain from bone metastasis

Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, Fu CY

Drug Design, Development and Therapy 2015, 9:4239-4245

Published Date: 18 August 2015

Clinical epidemiology of epithelial ovarian cancer in the UK

Doufekas K, Olaitan A

International Journal of Women's Health 2014, 6:537-545

Published Date: 23 May 2014

Ulcerative colitis six years after colon cancer: only a coincidence?

Sakellakis M, Makatsoris T, Gkermpesi M, Peroukidis S, Kalofonos H

International Medical Case Reports Journal 2014, 7:85-88

Published Date: 29 April 2014

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

How to reduce your cancer risk: mechanisms and myths

Nahleh Z, Bhatti NS, Mal M

International Journal of General Medicine 2011, 4:277-287

Published Date: 8 April 2011