Back to Journals » International Journal of Nanomedicine » Volume 7

Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

Authors Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D, Rimoli MG, Palaia R, Arra C, Carinci F

Received 7 June 2012

Accepted for publication 11 July 2012

Published 9 November 2012 Volume 2012:7 Pages 5683—5691


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Patrizia Bonelli,1 Franca M Tuccillo,1 Antonella Federico,5 Maria Napolitano,2 Antonella Borrelli,1 Daniela Melisi,6 Maria G Rimoli,6 Raffaele Palaia,3 Claudio Arra,4 Francesco Carinci7

Laboratory of Molecular Biology and Viral Oncogenesis; 2Department of Clinical Immunology; 3Department of Gastrointestinal-Hepatobiliary-Pancreatic Cancer Oncology Surgery; 4Animal Facility, National Cancer Institute G Pascale, Naples, Italy; 5Microtech Laboratory, Naples, Italy; 6Pharmaceutical and Toxicological Chemistry Department, School of Pharmacy, University "Federico II", Naples, Italy; 7Department of Maxillofacial Surgery, University of Ferrara, Ferrara, Italy

Purpose: Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in MKN-45 cells.
Methods: MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry.
Results: Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum concentration at 24 hours. The inhibition of proliferation was confirmed to be due to the intracellular release of ibuprofen from the NPs. Using PLGA NPs as carriers, ibuprofen exerted an antiproliferative activity at concentrations > 100 times less than free ibuprofen, suggesting greater efficiency and less cellular toxicity. In addition, when carried by PLGA NPs, ibuprofen more quickly induced the expression of transcripts involved in proliferation and invasiveness processes.
Conclusion: Ibuprofen exerted an antiproliferative effect on MKN-45 cells at low concentrations. This effect was achieved using PLGA NPs as carriers of low doses of ibuprofen.

Keywords: nonsteroidal anti-inflammatory drug (NSAID), proliferation, uptake, MKN-45 cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity

Lim JP, Leung BP, Ding YY, Tay L, Ismail NH, Yeo A, Yew S, Chong MS

Clinical Interventions in Aging 2015, 10:605-609

Published Date: 25 March 2015

MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice

Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L

International Journal of Nanomedicine 2012, 7:5957-5967

Published Date: 3 December 2012

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

International Journal of Nanomedicine 2012, 7:5019-5028

Published Date: 17 September 2012

Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, Hong PD, Yu DS, Farber IY

International Journal of Nanomedicine 2012, 7:4159-4168

Published Date: 31 July 2012

Effects of chitosan and water-soluble chitosan micro- and nanoparticles in obese rats fed a high-fat diet

Zhang HL, Zhong XB, Tao Y, Wu SH, Su ZQ

International Journal of Nanomedicine 2012, 7:4069-4076

Published Date: 27 July 2012

Development of 3D in vitro platform technology to engineer mesenchymal stem cells

Hosseinkhani H, Hong P, Yu D, Chen Y, Ickowicz D, Farber I, Domb AJ

International Journal of Nanomedicine 2012, 7:3035-3043

Published Date: 29 June 2012

Acoustic cardiac signals analysis: a Kalman filter–based approach

Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, Ali J, Yupapin PP

International Journal of Nanomedicine 2012, 7:2873-2881

Published Date: 11 June 2012

Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions

Tavares ER, Freitas FR, Diament JD, Maranhão RC

International Journal of Nanomedicine 2011, 6:2297-2304

Published Date: 12 October 2011

The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

Biazar E, Heidari M, Asefnezhad A, Montazeri N

International Journal of Nanomedicine 2011, 6:631-639

Published Date: 31 March 2011