Back to Journals » International Journal of Nanomedicine » Volume 7

Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

Authors Shameli K, Ahmad M, Zamanian A , Sangpour P, Parvaneh Shabanzadeh P, Abdollahi Y , Mohsen Z

Received 6 August 2012

Accepted for publication 9 September 2012

Published 25 October 2012 Volume 2012:7 Pages 5603—5610


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Kamyar Shameli,1,2 Mansor Bin Ahmad,1 Ali Zamanian,2 Parvanh Sangpour,2 Parvaneh Shabanzadeh,3 Yadollah Abdollahi,4 Mohsen Zargar5

1Department of Chemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Materials and Energy Research Center, Karaj, Iran; 3Department of Mathematics, 4Advanced Materials and Nanotechnology Laboratory, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Biology, Islamic Azad University, Qom, Iran

Abstract: Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.

Keywords: silver nanoparticles, Curcuma longa, biosynthesis, green synthesis, transmission electron microscopy

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.