Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells

Authors Lai TH, Shieh JM, Tsou CJ, Wu WB

Received 13 May 2015

Accepted for publication 8 July 2015

Published 21 September 2015 Volume 2015:10(1) Pages 5925—5939

DOI https://doi.org/10.2147/IJN.S88514

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Farooq Shiekh

Peer reviewer comments 4

Editor who approved publication: Dr Thomas J Webster

Tsung-Hsuan Lai,1–3 Jiunn-Min Shieh,4,5 Chih-Jen Tsou,1 Wen-Bin Wu1

1School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan; 2Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; 3Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taiwan; 4Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan; 5Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan

Abstract: It has been reported that increased levels and activity of the heme oxygenase-1 (HO-1) protein ameliorate tissue injuries. In the present study, we investigated the effects and mechanisms of action of gold nanoparticles (AuNPs) on HO-1 protein expression in human vascular endothelial cells (ECs). The AuNPs induced HO-1 protein and mRNA expression in a concentration- and time-dependent manner. The induction was reduced by the thiol-containing antioxidants, including N-acetylcysteine and glutathione, but not by the non-thiol-containing antioxidants and inhibitors that block the enzymes for intracellular reactive oxygen species generation. The AuNPs enhanced Nrf2 protein levels but did not affect Nrf2 mRNA expression. In response to the AuNP treatment, the cytosolic Nrf2 translocated to the nucleus, and, concomitantly, Bach1 exited the nucleus and its tyrosine phosphorylation increased. The chromatin immunoprecipitation assay revealed that the translocated Nrf2 bound to the antioxidant-response element located in the E2 enhancer region of the HO-1 gene promoter and acted as a transcription factor. Although N-acetylcysteine inhibited the AuNP-induced Nrf2 nuclear translocation, the AuNPs did not promote intracellular reactive oxygen species production or endoplasmic reticulum stress in the ECs. Knockdown of Nrf2 expression by RNA interference significantly inhibited AuNP-induced HO-1 expression at the protein and mRNA levels. In summary, AuNPs enhance the levels and nuclear translocation of the Nrf2 protein and Bach1 export/tyrosine phosphorylation, leading to Nrf2 binding to the HO-1 E2 enhancer promoter region to drive HO-1 expression in ECs. This study, together with our parallel findings, demonstrates that AuNPs can act as an HO-1 inducer, which may partially contribute to their anti-inflammatory bioactivity in human vascular ECs.

Keywords: endothelium, inflammation, Keap1, nuclear export, translocation, tyrosine phosphorylation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model

Boechat AL, Oliveira CP, Tarragô AM, Costa AG, Malheiro A, Guterres SS, Pohlmann AR

International Journal of Nanomedicine 2015, 10:6603-6614

Published Date: 22 October 2015

Anti-transferrin receptor-modified amphotericin B-loaded PLA–PEG nanoparticles cure Candidal meningitis and reduce drug toxicity

Tang X, Liang Y, Zhu Y, Xie C, Yao A, Chen L, Jiang Q, Liu T, Wang X, Qian Y, Wei J, Ni W, Dai J, Jiang Z, Hou W

International Journal of Nanomedicine 2015, 10:6227-6241

Published Date: 5 October 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease

Fonseca-Santos B, Gremião MP, Chorilli M

International Journal of Nanomedicine 2015, 10:4981-5003

Published Date: 4 August 2015

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011