Back to Journals » International Journal of Nanomedicine » Volume 7

Gold nanoparticle trapping and delivery for therapeutic applications

Authors Aziz, Suwanpayak N, Ma, Jomtarak R, Saktioto T, Ali J, Yupapin P

Published 29 December 2011 Volume 2012:7 Pages 11—17


Review by Single anonymous peer review

Peer reviewer comments 3

MS Aziz1, Nathaporn Suwanpayak3,4, Muhammad Arif Jalil2, R Jomtarak4, T Saktioto2, Jalil Ali1, PP Yupapin4
1Institute of Advanced Photonics Science, 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3King Mongkut's Institute of Technology Ladkrabang, Chump on Campus, Chumphon, 4Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

Abstract: A new optical trapping design to transport gold nanoparticles using a PANDA ring resonator system is proposed. Intense optical fields in the form of dark solitons controlled by Gaussian pulses are used to trap and transport nanoscopic volumes of matter to the desired destination via an optical waveguide. Theoretically, the gradient and scattering forces are responsible for this trapping phenomenon, where in practice such systems can be fabricated and a thin-film device formed on the specific artificial medical materials, for instance, an artificial bone. The dynamic behavior of the tweezers can be tuned by controlling the optical pulse input power and parameters of the ring resonator system. Different trap sizes can be generated to trap different gold nanoparticles sizes, which is useful for gold nanoparticle therapy. In this paper, we have shown the utility of gold nanoparticle trapping and delivery for therapy, which may be useful for cosmetic therapy and related applications.

Keywords: gold nanoparticle trapping, particle trapping, therapy, transport

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.