Back to Journals » Clinical Interventions in Aging » Volume 15

Frail Older Individuals Maintaining a Steady Standing Position: Associations Between Sway Measurements with Frailty Status Across Four Different Frailty Instruments

Authors Schülein S, Sieber CC, Gaßmann KG, Ritt M

Received 13 July 2019

Accepted for publication 13 December 2019

Published 23 March 2020 Volume 2020:15 Pages 451—467


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Richard Walker

Samuel Schülein,1 Cornel Christian Sieber,2,3 Karl-Günter Gaßmann,1,2 Martin Ritt2,4

1Geriatrics Centre Erlangen, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany; 2Institute for Biomedicine of Aging (IBA), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany; 3Department of Internal Medicine, Kantonsspital Winterthur, Winterthur, Switzerland; 4Department of Internal Medicine III, Klinikum Neumarkt, Kliniken des Landkreises Neumarkt i. d. OPf, Neumarkt, Germany

Correspondence: Martin Ritt
Institute for Biomedicine of Ageing (IBA), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Kobergerstraße 60, Nürnberg D-90408, Germany
Tel +49 9181 420 3076
Fax +49 9181 420 3077
Email [email protected]

Objective: An analysis of the relationships between static equilibrium parameters and frailty status and/or severity across four different frailty measures.
Design: Cross-sectional analysis.
Setting: Geriatric wards of a general hospital.
Participants: One hundred twenty-three geriatric inpatients comprising 70 women (56.5%) and 53 men (42.7%) with an age range of 68– 95 years.
Methods: The variation in the center of pressure (CoP), ie, the length of sway, the area of sway, and the mean speed, was assessed for different positions/tasks: 1) wide standing with eyes open (WSEO); 2) wide standing with eyes closed (WSEC); 3) narrow standing with eyes open (NSEO) and 4) narrow standing with eyes closed (NSEC), using a force plate. Frailty status and/or frailty severity were evaluated using the frailty phenotype (FP), the clinical frailty scale (CFS), the 14-item frailty index based on a comprehensive geriatric assessment (FI-CGA), and a 47-item frailty index (FI).
Results: WSEO length of sway (FP, CFS, FI-CGA, FI), WSEO area of sway (FP, CFS, FI-CGA, FI), and WSEO mean speed (FP, CFS, FI-CGA, FI), WSEC length of sway (FP, FI-CGA, FI), WSEC area of sway (FP, FI-CGA, FI) and WSEC mean speed (FI-CGA, FI), NSEO length of sway (FP, FI-CGA, FI), NSEO area of sway (FP, CFS, FI-CGA, FI), and NSEO mean speed (FP, CFS, FI-CGA, FI), NSEC length of sway (FI-CGA, FI), NSEC area of sway (FI-CGA, FI) and NSEC mean speed (FI-CGA, FI) were associated with the frailty status and/or severity across the four different frailty instruments (all p < 0.05, respectively).
Conclusion: Greater fluctuations in CoP with increasing frailty status and/or severity were a uniform finding across various major frailty instruments.

Keywords: frailty instruments, balance quality parameters, older people

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]