Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

Authors Friedrich RP, Janko C, Poettler M, Tripal P, Zaloga J, Cicha I, Dürr S, Nowak J, Odenbach S, Slabu I, Liebl M, Trahms L, Stapf M, Hilger I, Lyer S, Alexiou C

Received 12 February 2015

Accepted for publication 18 March 2015

Published 26 June 2015 Volume 2015:10(1) Pages 4185—4201

DOI https://doi.org/10.2147/IJN.S82714

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster

Ralf P Friedrich,1 Christina Janko,1 Marina Poettler,1 Philipp Tripal,1 Jan Zaloga,1 Iwona Cicha,1 Stephan Dürr,1,2 Johannes Nowak,3 Stefan Odenbach,3 Ioana Slabu,4 Maik Liebl,4 Lutz Trahms,4 Marcus Stapf,5 Ingrid Hilger,5 Stefan Lyer,1 Christoph Alexiou1

1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, University hospital Erlangen, 2Department of Otorhinolaryngology, Head and Neck Surgery, Section of Phoniatrics and Pediatric Audiology, University hospital Erlangen, Erlangen, 3Technische Universität Dresden, Chair of Magnetofluiddynamics, Measuring and Automation Technology, Dresden, 4Physikalisch-Technische Bundesanstalt Berlin, Berlin, 5Department of Radiology, Division of Diagnostic and Interventional Radiology, Experimental Radiology, University hospital Jena, Jena, Germany

Abstract: Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of superparamagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products.

Keywords: low cytometry, side scatter, intracellular superparamagnetic iron oxide nanoparticles, quantification, spectroscopy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake

Poller JM, Zaloga J, Schreiber E, Unterweger H, Janko C, Radon P, Eberbeck D, Trahms L, Alexiou C, Friedrich RP

International Journal of Nanomedicine 2017, 12:3207-3220

Published Date: 19 April 2017

Readers of this article also read:

Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep

Lim K, Kim SY, Lee B, Segarra C, Kang S, Ju YR, Schmerr MJ, Coste J, Kim SY, Yokoyama T, An SSA

International Journal of Nanomedicine 2015, 10:241-250

Published Date: 9 September 2015

Ultrafast sonochemical synthesis of protein-inorganic nanoflowers

Batule BS, Park KS, Kim MI, Park HG

International Journal of Nanomedicine 2015, 10:137-142

Published Date: 25 August 2015

In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

Gu MJ, Li KF, Zhang LX, Wang H, Liu LS, Zheng ZZ, Han NY, Yang ZJ, Fan TY

International Journal of Nanomedicine 2015, 10:5187-5204

Published Date: 17 August 2015

Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice

Xue M, Zhang L, Yang M, Zhang W, Li X, Ou Z, Li Z, Liu S, Li X, Yang S

International Journal of Nanomedicine 2015, 10:5049-5057

Published Date: 6 August 2015

Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

Santos Ferreira I, Bettencourt AF, Gonçalves LMD, Kasper S, Bétrisey B, Kikhney J, Moter A, Trampuz A, Almeida AJ

International Journal of Nanomedicine 2015, 10:4351-4366

Published Date: 7 July 2015

Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells

Swanner J, Mims J, Carroll DL, Akman SA, Furdui CM, Torti SV, Singh RN

International Journal of Nanomedicine 2015, 10:3937-3953

Published Date: 11 June 2015

Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA

Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S

International Journal of Nanomedicine 2015, 10:3403-3416

Published Date: 8 May 2015

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010