Back to Journals » Clinical, Cosmetic and Investigational Dermatology » Volume 7

Fibroblasts and myofibroblasts in wound healing

Authors Darby IA, Laverdet B, Bonté F, Desmoulière A

Received 18 July 2014

Accepted for publication 29 August 2014

Published 6 November 2014 Volume 2014:7 Pages 301—311

DOI https://doi.org/10.2147/CCID.S50046

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Jeffrey Weinberg


Ian A Darby,1 Betty Laverdet,2 Frédéric Bonté3, Alexis Desmoulière2

1School of Medical Sciences, RMIT University, Melbourne, VIC, Australia; 2Department of Physiology and EA 6309, FR 3503, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France; 3LVMH Recherche, Saint Jean de Braye, France

Abstract: (Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.

Keywords: myofibroblast, fibroblast, α-smooth muscle actin, mechanical signaling, fibrosis, scarring
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]