Back to Journals » Neuropsychiatric Disease and Treatment » Volume 16

Exosomal Long Non-Coding RNA Expression from Serum of Patients with Acute Minor Stroke

Authors Xu X, Zhuang C, Chen L

Received 9 September 2019

Accepted for publication 23 December 2019

Published 13 January 2020 Volume 2020:16 Pages 153—160


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Yuping Ning

Xiaonan Xu, 1,* Chengle Zhuang, 2,* Liming Chen 1

1Department of Neurology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, People’s Republic of China; 2Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Liming Chen Email

Background: Acute minor stroke (AMS) is one kind of hypoxic ischemic necrosis with no more than 4 National Institutes of Health Stroke Scale (NIHSS) score. However, the early diagnosis of AMS is tough for lack of effective molecular markers. Recently, many long non-coding RNAs (lncRNAs) associated with AMS have been gradually revealed. Here, we aim to find the potential biomarkers of lncRNAs in exosomes isolated from blood serum of patients with AMS for early detection.
Methods: RNA-seq technique, KEGG pathway analysis and GO enrichment analysis were used in this study. Besides, reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate expression levels of four of eleven differentially expressed lncRNAs (lnc-CRKL-2, lnc-NTRK3-4, RPS6KA2-AS1 and lnc-CALM1-7) involved in the neurotrophin signaling pathway.
Results: The expression levels of lnc-CRKL-2 (mean value 48, standard deviation 4.583, P = 0.003) and lnc-NTRK3-4 (mean value 32.3, standard deviation 2.08, P = 0.001) were increased significantly in AMS patients, while the expression levels of RPS6KA2-AS1 (mean value − 118.7, standard deviation 7.09, P = 0.001) and lnc-CALM1-7 (mean value − 148.7, standard deviation 6.10, P = 0.001) were decreased dramatically.
Conclusion: In conclusion, these four new revealed lncRNAs may be used as novel joint biomarkers for the early detection of AMS.

Keywords: exosomes, stroke, LncRNAs, biomarker

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]