Back to Journals » Infection and Drug Resistance » Volume 13

Evaluation of Resistance Mechanisms in Carbapenem-Resistant Enterobacteriaceae

Authors Alizadeh N, Ahangarzadeh Rezaee M, Samadi Kafil H, Hasani A, Soroush Barhaghi MH, Milani M, Yeganeh Sefidan F, Memar MY, Lalehzadeh A, Ghotaslou R

Received 31 December 2019

Accepted for publication 26 April 2020

Published 12 May 2020 Volume 2020:13 Pages 1377—1385

DOI https://doi.org/10.2147/IDR.S244357

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Eric Nulens


Naser Alizadeh,1,2 Mohammad Ahangarzadeh Rezaee,1,3 Hossein Samadi Kafil,3 Alka Hasani,3 Mohammad Hossein Soroush Barhaghi,3 Morteza Milani,4 Fatemeh Yeganeh Sefidan,3 Mohammad Yousef Memar,3,5 Aidin Lalehzadeh,3 Reza Ghotaslou1,3

1Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 2Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; 3Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran; 4Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Medical, University of Tabriz, Tabriz, Iran; 5Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Correspondence: Reza Ghotaslou
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Tel/Fax + 984133364661
Email rzgottaslo@yahoo.com

Background: Carbapenem-resistant Enterobacteriaceae (CRE) is a major concern leading to morbidity and mortality in the world. CRE often is becoming a cause of therapeutic failure in both hospital and community-acquired infections.
Aim: This study aimed to investigate the resistance mechanisms of CRE by phenotypic and molecular methods.
Materials and Methods: Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Antimicrobial susceptibility testing was carried out using phenotypic methods. The carbapenem resistance mechanisms including efflux pump hyperexpression, AmpC overproduction, carbapenemase genes, and deficiency in OmpK35 and OmpK36 were determined by phenotypic and molecular methods, respectively.
Results: Sixty CRE (50 Klebsiella pneumoniae, 6 Escherichia coli, and 4 Enterobacter spp.) were isolated from October 2018 to June 2019. Amikacin was found to be the most effective drug against CRE isolates. All isolates were resistant to imipenem and meropenem by the micro-broth dilution. AmpC overproduction was observed in all Enterobacter spp. and three K. pneumoniae isolates. No efflux pump activity was found. Carba NP test and Modified Hodge Test could find carbapenemase in 59 (98%) isolates and 57 (95%) isolates, respectively. The most common carbapenemase gene was blaOXA-48-like (72.8%) followed by blaNDM (50.8%), blaIMP (18.6%), blaVIM (11.8%), and blaKPC (6.7%). The ompK35 and ompK36 genes were not detected in 10 and 7 K. pneumoniae isolates, respectively.
Conclusion: The amikacin is considered as a very efficient antibiotic for the treatment of CRE isolates in our region. Carbapenemase production and overproduction of AmpC are the main carbapenem resistance mechanisms in CRE isolates. Finally, Carba NP test is a rapid and reliable test for early detection of carbapenemase-producing isolates.

Keywords: amikacin, carbapenemase genes, carbapenem-resistant Enterobacteriaceae, Carba NP test

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]