Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles

Authors Xu GY, Shi HS, Ren LB, Gou HF, Gong DY, Gao X, Huang N

Received 8 October 2014

Accepted for publication 28 November 2014

Published 16 March 2015 Volume 2015:10(1) Pages 2051—2063

DOI https://doi.org/10.2147/IJN.S75550

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Carlos Rinaldi

Guangya Xu,1,* Huashan Shi,2,* Laibin Ren,1 Hongfeng Gou,1 Daoyin Gong,1 Xiang Gao,1–3 Ning Huang1

1Department of Pathophysiology, West China College of Preclinical Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2State Key Laboratory of Biotherapy and Cancer Center, 3Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People’s Republic of China

*These authors contributed equally to this work

Abstract: Colorectal cancer, a type of malignant neoplasm originating from the epithelial cells lining the colon and/or rectum, has been the third most frequent malignancy and one of the leading causes of cancer-related deaths in the US. As a bioflavonoid with high anticancer potential, quercetin (Qu) has been proved to have a prospective applicability in chemotherapy for a series of cancers. However, quercetin is a hydrophobic drug, the poor hydrophilicity of which hinders its clinical usage in cancer therapy. Therefore, a strategy to improve the solubility of quercetin in water and/or enhance the bioavailability is desired. Encapsulating the poorly water-soluble, hydrophobic agents into polymer micelles could facilitate the dissolution of drugs in water. In our study, nanotechnology was employed, and quercetin was encapsulated into the biodegradable nanosized amphiphilic block copolymers of monomethoxy poly(ethylene glycol)–poly(ε-caprolactone) (MPEG–PCL), attempting to present positive evidences that this drug delivery system of polymeric micelles is effective. The quercetin-loaded MPEG–PCL nanomicelles (Qu-M), with a high drug loading of 6.85% and a minor particle size of 34.8 nm, completely dispersed in the water and released quercetin in a prolonged period in vitro and in vivo. At the same time, compared with free quercetin, Qu-M exhibited improved apoptosis induction and cell growth inhibition effects in CT26 cells in vitro. Moreover, the mice subcutaneous CT26 colon cancer model was established to evaluate the therapy efficiency of Qu-M in detail, in which enhanced anti-colon cancer effect was proved in vivo: Qu-M were more efficacious in repressing the growth of colon tumor than free quercetin. In addition, better effects of Qu-M on inducing cell apoptosis, inhibiting tumor angiogenesis, and restraining cell proliferation were observed by immunofluorescence analysis. Our study indicated that Qu-M were a novel nanoagent of quercetin with an enhanced antitumor activity, which could serve as a promising potential candidate for colon cancer chemotherapy.

Keywords: quercetin, nanoformulation, colon cancer, cell apoptosis, angiogenesis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

Zheng S, Gao X, Liu X, Yu T, Zheng T, Wang Y, You C

International Journal of Nanomedicine 2016, 11:2721-2736

Published Date: 9 June 2016

Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials

Fan RR, Deng XH, Zhou LX, Gao X, Fan M, Wang YL, Guo G

International Journal of Nanomedicine 2014, 9:615-626

Published Date: 21 January 2014

Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer

Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, Li Y, Qian ZY, Gao X, Shi HS

International Journal of Nanomedicine 2013, 8:3521-3531

Published Date: 24 September 2013

Novel thermosensitive hydrogel for preventing formation of abdominal adhesions

Gao X, Deng XH, Wei XW, Shi HS, Wang FT, Ye TH, Shao B, Nie W,Li YL, Luo M, Gong CY, Huang N

International Journal of Nanomedicine 2013, 8:2453-2463

Published Date: 11 July 2013

Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer

Gao X, Wang BL, Wei XW, Rao W, Ai F, Zhao F, Men K, Yang BW, Liu XY, Huang MJ, Gou ML, Qian ZY, Huang N, Wei YQ

International Journal of Nanomedicine 2013, 8:971-982

Published Date: 8 March 2013

A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation

Shi HS, Gao X, Li D, Zhang QW, Wang YS, Zheng Y, Cai LL, Zhong RM, Rui A, Li ZY, Zheng H, Chen XC, Chen LJ

International Journal of Nanomedicine 2012, 7:2601-2611

Published Date: 24 May 2012

Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

Zhang L, Gao X, Men K, Wang BL, Zhang S, Qiu J, Huang M, Gou ML, Huang N, Qian ZY, Zhao X, Wei YQ

International Journal of Nanomedicine 2011, 6:2419-2427

Published Date: 19 October 2011

Readers of this article also read:

Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles

Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, Bukhari SN

International Journal of Nanomedicine 2015, 10:2079-2088

Published Date: 16 March 2015

Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

Zhang L, Zhu D, Dong X, Sun H, Song C, Wang C, Kong D

International Journal of Nanomedicine 2015, 10:2101-2114

Published Date: 16 March 2015

Development of an oral push–pull osmotic pump of fenofibrate-loaded mesoporous silica nanoparticles

Zhao Z, Wu C, Zhao Y, Hao Y, Liu Y, Zhao W

International Journal of Nanomedicine 2015, 10:1691-1701

Published Date: 3 March 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010