Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes

Authors Meng S, Chen Z, Yang L, Zhang W, Liu D, Guo J, Guan Y, Li J

Received 14 April 2013

Accepted for publication 24 May 2013

Published 13 August 2013 Volume 2013:8(1) Pages 3051—3060

DOI https://doi.org/10.2147/IJN.S46748

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Shu Meng,1 Zaixing Chen,2 Liqun Yang,1 Wei Zhang,1 Danhua Liu,1 Jing Guo,1 Yanmin Guan,1 Jianxin Li1

1Liaoning Research Institute of Family Planning, Shenyang, Liaoning Province, People's Republic of China; 2School of Pharmacy, China Medical University, Shenyang, Liaoning Province, People's Republic of China

Abstract: The current investigation aimed to evaluate the transdermal potential of novel testosterone propionate (TP) ethosomes and liposomes prepared by surfactant modification. The effect of hexadecyl trimethyl ammonium bromide and cremophor EL-35 on the particle size and zeta potential of the prepared vesicles was investigated. The entrapment efficiency and stability, as well as in vitro and in vivo skin permeation, were studied with the various techniques, such as differential scanning calorimetry, confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, and so on. The results indicated that the ethosomes were defined as spherical, unilamellar structures with low polydispersity (0.100 ± 0.015) and nanometric size (156.5 ± 3.5 nm). The entrapment efficiency of TP in ethosomal and liposomal carriers was 92.7% ± 3.7% and 64.7% ± 2.1%, respectively. The stability profile of the prepared TP ethosomal system assessed for 120 days revealed very low aggregation and very low growth in vesicular size. TP ethosomes also provided an enhanced transdermal flux of 37.85 ± 2.8 µg/cm2/hour and a decreased lag time of 0.18 hours across mouse skin. The skin permeation efficiency of the TP ethosomes as further assessed by confocal laser scanning microscopy revealed enhanced permeation of rhodamine red-loaded formulations to the deeper layers of the skin (260 µm) than that of the liposomal formation (120 µm).

Keywords: testosterone propionate, surfactant-modified ethosomes, liposomes, confocal laser scanning microscopy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles

Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C

International Journal of Nanomedicine 2013, 8:4659-4671

Published Date: 5 December 2013

Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry

Andrade CG, Cabral Filho PE, Tenorio DPL, Santos BS, Beltrão EIC, Fontes A, Carvalho Jr LB

International Journal of Nanomedicine 2013, 8:4623-4629

Published Date: 2 December 2013

Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin

Zhang KC, Lv SW, Li XY, Feng YF, Li X, Liu L, Li S, Li YJ

International Journal of Nanomedicine 2013, 8:3227-3239

Published Date: 22 August 2013

Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics

Chen J, Shao R, Zhang XD, Chen C

International Journal of Nanomedicine 2013, 8:2677-2688

Published Date: 24 July 2013

Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138–  CD34– tumor stem-like cells in multiple myeloma-bearing mice

Yang C, Wang J, Chen D, Chen J, Xiong F, Zhang H, Zhang Y, Gu N, Dou J

International Journal of Nanomedicine 2013, 8:1439-1449

Published Date: 12 April 2013

Novel nanostructured biomaterials: implications for coronary stent thrombosis

Karagkiozaki V, Karagiannidis PG, Kalfagiannis N, Kavatzikidou P, Patsalas P, Georgiou D, Logothetidis S

International Journal of Nanomedicine 2012, 7:6063-6076

Published Date: 17 December 2012

Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

Chen DZ, Tang QS, Li XD, Zhou XJ, Zang J, Xue WQ, Xiang JY, Guo CQ

International Journal of Nanomedicine 2012, 7:4973-4982

Published Date: 14 September 2012

Corrigendum

Wu Q, Chu M

International Journal of Nanomedicine 2012, 7:4531-4532

Published Date: 15 August 2012

Evaluation of the genotoxicity of cellulose nanofibers

de Lima R, Feitosa LO, Maruyama CR, Barga MA, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Mattoso LH, Fraceto LF

International Journal of Nanomedicine 2012, 7:3555-3565

Published Date: 11 July 2012