Back to Journals » Therapeutics and Clinical Risk Management » Volume 8

Efficacy and safety of venous thromboembolism prophylaxis with apixaban in major orthopedic surgery

Authors Werth, Halbritter, Beyer-Westendorf J

Received 24 January 2012

Accepted for publication 28 February 2012

Published 23 March 2012 Volume 2012:8 Pages 139—147

DOI https://doi.org/10.2147/TCRM.S24238

Review by Single-blind

Peer reviewer comments 2

Sebastian Werth, Kai Halbritter, Jan Beyer-Westendorf
Center for Vascular Medicine and Department of Medicine III, Division of Angiology, University Hospital “Carl Gustav Carus” Dresden, Dresden, Germany

Abstract: Over the last 15 years, low-molecular-weight heparins (LMWHs) have been accepted as the “gold standard” for pharmaceutical thromboprophylaxis in patients at high risk of venous thromboembolism (VTE) in most countries around the world. Patients undergoing major orthopedic surgery (MOS) represent a population with high risk of VTE, which may remain asymptomatic or become symptomatic as deep vein thrombosis or pulmonary embolism. Numerous trials have investigated LMWH thromboprophylaxis in this population and demonstrated high efficacy and safety of these substances. However, LMWHs have a number of disadvantages, which limit the acceptance of patients and physicians, especially in prolonged prophylaxis up to 35 days after MOS. Consequently, new oral anticoagulants (NOACs) were developed that are of synthetic origin and act as direct and very specific inhibitors of different factors in the coagulation cascade. The most developed NOACs are dabigatran, rivaroxaban, and apixaban, all of which are approved for thromboprophylaxis in MOS in a number of countries around the world. This review is focused on the pharmacological characteristics of apixaban in comparison with other NOACs, on the impact of NOAC on VTE prophylaxis in daily care, and on the management of specific situations such as bleeding complications during NOAC therapy.

Keywords: major orthopedic surgery, apixaban, dabigatran, edoxaban, rivaroxaban, deep vein thrombosis, venous thromboembolism, VTE prophylaxis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Hematuria following Botox treatment for upper limb spasticity: a case report

Lo TC, Yeung ST, Lee S, Chang EY

Journal of Pain Research 2015, 8:619-622

Published Date: 14 September 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010