Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Efficacy and safety of dendrimer nanoparticles with coexpression of tumor necrosis factor-α and herpes simplex virus thymidine kinase in gene radiotherapy of the human uveal melanoma OCM-1 cell line

Authors Wang YC, Mo L, Wei WB, Shi XH

Received 23 May 2013

Accepted for publication 20 July 2013

Published 2 October 2013 Volume 2013:8(1) Pages 3805—3816

DOI https://doi.org/10.2147/IJN.S48950

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Yingchih Wang,1,* Li Mo,2,* Wenbin Wei,1 Xuehui Shi1

1Beijing Tongren Eye Center, Capital Medical University, Beijing, People's Republic of China; 2Department of Ophthalmology, The 180th Hospital of PLA, Quanzhou, People's Republic of China

*These authors contributed equally to this work

Abstract: Human uveal melanoma is the most common primary intraocular tumor, and brachytherapy is one of the most common and effective treatment strategies. In order to find a safer and more effective way to increase the radio sensitivity of the tumor, we tried to use the dendrimer nanoparticle performing coexpression gene radiotherapy. In this study, we constructed recombinant DNA plasmids (early growth response-1 tumor necrosis factor-α [pEgr1-TNFα], pEgr1 thymidine kinase [TK], and pEgr1-TNFα -TK) according to the Egr1 promoter sequence. The sequences of human TNFα and herpes simplex virus (HSV) TK that were published by GenBank. Agarose gel electrophoresis and DNA sequencing had proven that we constructed the double-gene recombined plasmids pEgr1-TNF-TK correctly, as well as the plasmids pEgr1-TNFα and pEgr1-TK. The dendrimer nanoparticles combined with plasmid DNA as dendriplexes were verified with agarose gel electrophoresis and observed by transmission electron microscopy (TEM) and scanning electron microscopy to define size and shape. Zeta potential was measured using a Zetasizer analyzer. Optimal size and neutral zeta-potential characteristics of dendriplexes were achieved for the transfection studies. DNase I examination proved that the dendriplexes could protect plasmid DNA for at least 6 hours. The recombinant plasmids were transfected with dendrimer nanoparticles into the human choroidal melanoma OCM-1 cell line, followed by exposure to iodine-125 (125I) after transfection. After transfection with dendrimer nanoparticles and the irradiation of 125I, the gene expressions of TNFα and HSV1-TK were significantly increased at the protein level by enzyme-linked immunosorbent assay and Western blot analysis in OCM-1 cells. The cellular morphology of OCM-1 cells altering was observed by TEM, and a decrease in cell proliferation was revealed in cell-growth curves. Flow cytometry of annexin V/propidium iodide double-dyeing apoptosis and caspase-3 fluorescence staining showed that this treatment method could turn transfected OCM-1 cells into apoptosis and necrosis by the effects of the gene expression. This study indicated that the dendrimer nanoparticles with coexpression of TNF-α and HSV1-TK gene therapy are effective and safe and can provide us with a novel strategy to treat human uveal melanoma in the future.

Keywords: recombinant plasmid, human uveal melanoma, gene radiotherapy, gene expression, dendrimer nanoparticle

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Skull base metastasis from papillary thyroid carcinoma: a report of three cases

Tunio MA, Al Asiri M, Al-Qahtani KH, Aldandan S, Riaz K, Bayoumi Y

International Medical Case Reports Journal 2015, 8:127-131

Published Date: 25 June 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole

Hu XJ, Liu Y, Zhou XF, Zhu QL, Bei YY, You BG, Zhang CG, Chen WL, Wang ZL, Zhu AJ, Zhang XN, Fan YJ

International Journal of Nanomedicine 2013, 8:3543-3558

Published Date: 20 September 2013

Application of liposomal technologies for delivery of platinum analogs in oncology

Liu D, He C, Wang AZ, Lin W

International Journal of Nanomedicine 2013, 8:3309-3319

Published Date: 26 August 2013

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

FarrokhTakin E, Ciofani G, Puleo GL, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

International Journal of Nanomedicine 2013, 8:2319-2331

Published Date: 28 June 2013

Preclinical evaluation of sorafenib-eluting stent for suppression of human cholangiocarcinoma cells

Kim DH, Jeong YI, Chung CW, Kim CH, Kwak TW, Lee HM, Kang DH

International Journal of Nanomedicine 2013, 8:1697-1711

Published Date: 30 April 2013

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012