Back to Journals » Journal of Pain Research » Volume 6

Effects of NSAIDs and paracetamol (acetaminophen) on protein kinase C epsilon translocation and on substance P synthesis and release in cultured sensory neurons

Authors Vellani V, Franchi S, Prandini M, Moretti S, Castelli M, Giacomoni C, Sacerdote P 

Received 11 August 2012

Accepted for publication 20 December 2012

Published 12 February 2013 Volume 2013:6 Pages 111—120

DOI https://doi.org/10.2147/JPR.S36916

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Vittorio Vellani,1 Silvia Franchi,2 Massimiliano Prandini,1 Sarah Moretti,2 Mara Castelli,2 Chiara Giacomoni,3 Paola Sacerdote2

1Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; 3Department of Economics and Technology, University of the Republic of San Marino, Republic of San Marino

Abstract: Celecoxib, diclofenac, ibuprofen, and nimesulide are nonsteroidal anti-inflammatory drugs (NSAIDs) very commonly used for the treatment of moderate to mild pain, together with paracetamol (acetaminophen), a very widely used analgesic with a lesser anti-inflammatory effect. In the study reported here, we tested the efficacy of celecoxib, diclofenac, and ibuprofen on preprotachykinin mRNA synthesis, substance P (SP) release, prostaglandin E2 (PGE2) release, and protein kinase C epsilon (PKCε) translocation in rat cultured sensory neurons from dorsal root ganglia (DRGs). The efficacy of these NSAIDs was compared with the efficacy of paracetamol and nimesulide in in vitro models of hyperalgesia (investigated previously). While nimesulide and paracetamol, as in previous experiments, decreased the percentage of cultured DRG neurons showing translocation of PKCε caused by 100 nM thrombin or 1 µM bradykinin in a dose-dependent manner, the other NSAIDs tested did not have a significant effect. The amount of SP released by peptidergic neurons and the expression level of preprotachykinin mRNA were assessed in basal conditions and after 70 minutes or 36 hours of stimulation with an inflammatory soup (IS) containing potassium chloride, thrombin, bradykinin, and endothelin-1. The release of SP at 70 minutes was inhibited only by nimesulide, while celecoxib and diclofenac were effective at 36 hours. The mRNA basal level of the SP precursor preprotachykinin expressed in DRG neurons was reduced only by nimesulide, while the increased levels expressed during treatment with the IS were significantly reduced by all drugs tested, with the exception of ibuprofen. All drugs were able to decrease basal and IS-stimulated PGE2 release. Our study demonstrates novel mechanisms of action of commonly used NSAIDS.

Keywords: PKCε, nociceptors, analgesia, nimesulide, celecoxib, diclofenac, ibuprofen, dorsal root ganglia

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.