Back to Journals » Clinical Interventions in Aging » Volume 10

Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month rando­mized controlled trial with a 1-year follow-up

Authors Eggenberger P, Schumacher V, Angst M, Theill N, de Bruin E

Received 1 May 2015

Accepted for publication 23 June 2015

Published 17 August 2015 Volume 2015:10 Pages 1335—1349


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5

Editor who approved publication: Dr Richard Walker

Patrick Eggenberger,1 Vera Schumacher,2,3 Marius Angst,1 Nathan Theill,4,5 Eling D de Bruin1,6,7

1Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 2Department of Gerontopsychology and Gerontology, 3University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, 4Division of Psychiatry Research, University of Zurich, Schlieren, 5Center for Gerontology, University of Zurich, Zurich, Switzerland; 6CAPHRI School for Public Health and Primary Care, Department of Epidemiology, 7Centre for Evidence Based Physiotherapy, Maastricht University, Maastricht, the Netherlands

Background: Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive–physical components would add training specific cognitive benefits compared to exclusively physical training.
Methods: Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated.
Results: Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive–physical programs were found in two dimensions of executive function. “Shifting attention” showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and “working memory” showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R2=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups.
Conclusion: Particular executive functions benefit from simultaneous cognitive–physical training compared to exclusively physical multicomponent training. Cognitive–physical training programs may counteract widespread cognitive impairments in the elderly.

Keywords: elderly, executive function, transfer, cognitive impairment, dance, video game

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]