Back to Journals » Drug Design, Development and Therapy » Volume 9

Different effects of statins on induction of diabetes mellitus: an experimental study

Authors Zhao W, Zhao S

Received 5 May 2015

Accepted for publication 6 September 2015

Published 24 November 2015 Volume 2015:9 Pages 6211—6223

DOI https://doi.org/10.2147/DDDT.S87979

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Syed Nasir Abbas Bhukari

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Wei Duan


Wang Zhao, Shui-Ping Zhao

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China

Background: To determine the effect of different statins on the induction of diabetes mellitus.
Materials and methods: Four statins (atorvastatin, pravastatin, rosuvastatin, and pitavastatin) were used. Cytotoxicity, insulin secretion, glucose-stimulated insulin secretion, and G0/G1 phase cell cycle arrest were investigated in human pancreas islet β cells, and glucose uptake and signaling were studied in human skeletal muscle cells (HSkMCs).
Results: Human pancreas islet β cells treated with 100 nM atorvastatin, pravastatin, rosuvastatin, and pitavastatin had reduced cell viability (32.12%, 41.09%, 33.96%, and 29.19%, respectively) compared to controls. Such cytotoxic effect was significantly attenuated by decreasing the dose to 10 and 1 nM, ranged from 1.46% to 17.28%. Cells treated with 100 nM atorvastatin, pravastatin, rosuvastatin, and pitavastatin had a reduction in the rate of insulin secretion rate by 34.07%, 30.06%, 26.78%, and 19.22%, respectively. The inhibitory effect was slightly attenuated by decreasing the dose to 10 and 1 nM, ranging from 10.84% to 29.60%. Insulin secretion stimulated by a high concentration of glucose (28 mmol/L) was significantly higher than a physiologic concentration of glucose (5.6 mmol/L) in all treatment groups. The glucose uptake rates at a concentration of 100 nM were as follows: atorvastatin (58.76%) < pravastatin (60.21%) < rosuvastatin (72.54%) < pitavastatin (89.96%). We also found that atorvastatin and pravastatin decreased glucose transporter (GLUT)-2 expression and induced p-p38 MAPK levels in human pancreas islet β cells. Atorvastatin, pravastatin, and rosuvastatin inhibited GLUT-4, p-AKT, p-GSK-3β, and p-p38 MAPK levels in HSkMCs.
Conclusion: Statins similar but different degree of effects on pancreas islet β cells damage and induce insulin resistance in HSkMC.

Keywords: statins, insulin, glucose, human pancreas islet β cell, human skeletal muscle cells
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]