Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 15

Differences Between Central Airway Obstruction and Chronic Obstructive Pulmonary Disease Detected with the Forced Oscillation Technique

Authors Yasuo M, Kitaguchi Y, Tokoro Y, Kosaka M, Wada Y, Kinjo T, Ushiki A, Yamamoto H, Hanaoka M

Received 19 January 2020

Accepted for publication 24 May 2020

Published 19 June 2020 Volume 2020:15 Pages 1425—1434


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell

Masanori Yasuo,* Yoshiaki Kitaguchi,* Yayoi Tokoro, Makoto Kosaka, Yosuke Wada, Takumi Kinjo, Atsuhito Ushiki, Hiroshi Yamamoto, Masayuki Hanaoka

The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan

*These authors contributed equally to this work

Correspondence: Masanori Yasuo
The First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
Tel +81 263 37 2631
Fax +81 263 36 3722
Email [email protected]

Background: Obstructive ventilatory disturbances occur in both chronic obstructive pulmonary disease (COPD), a typical disease representative of peripheral airway obstruction, and central airway obstruction (CAO). Pulmonary function tests (PFTs), which depend on patient effort, are traditionally used to evaluate lung function. The forced oscillation technique (FOT) is an effort-independent method for examining lung function during tidal breathing. The FOT is used universally to assess respiratory function in patients with COPD. Several studies have measured FOT to assess ventilatory disturbances in CAO. The results showed that FOT measurements in patients with CAO were similar to those reported in patients with COPD. However, no studies have compared FOT measurements directly between CAO and COPD. The aim of this study was to identify differences in ventilatory disturbances between peripheral and central airway obstructions in COPD and CAO, before patients received pharmacological therapy or bronchoscopic interventions, respectively.
Patients and Methods: We retrospectively included 16 patients with CAO (10 cases of tracheal obstruction and 6 cases of bronchial obstruction) and 75 treatment-naïve patients with COPD (60 cases in Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage II and 15 cases in GOLD stage III) that were admitted from December 2013 to May 2017. Prior to treatment, patients were examined with the FOT and PFTs.
Results: All parameters measured with the FOT in the inspiratory phase were significantly worse in patients with CAO than in patients with COPD. The PFTs showed that the CAO group had a significantly lower peak expiratory flow rate. In the airway wall thickening phenotype of COPD, a difference between the inspiratory and expiratory phases of the resonance frequency (ΔFres) was the best indicator for distinguishing between peripheral and central airway obstructions.
Conclusion: This study compared differences between CAO and COPD (mainly GOLD stage II). We found that the FOT measurement, ΔFres, was the optimal indicator of the difference between the airway wall thickening COPD phenotype and CAO. Thus, the difference might be due to mechanical changes that occur in COPD with airway wall thickening.

Keywords: forced oscillation technique, pulmonary function test, quality of life, central airway obstruction, COPD

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]