Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes

Authors Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, Bentley MVLB, Simões S

Received 7 April 2015

Accepted for publication 26 May 2015

Published 18 September 2015 Volume 2015:10(1) Pages 5837—5851

DOI https://doi.org/10.2147/IJN.S86186

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Andreia Ascenso,1 Sara Raposo,1 Cátia Batista,2 Pedro Cardoso,2 Tiago Mendes,2 Fabíola Garcia Praça,3 Maria Vitória Lopes Badra Bentley,3 Sandra Simões1

1Instituto de Investigação do Medicamento (iMed.ULisboa), 2Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; 3Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Monte Alegre, Ribeirão Preto, São Paulo, Brazil

Abstract: Ultradeformable vesicles (UDV) have recently become a promising tool for the development of improved and innovative dermal and transdermal therapies. The aim of this work was to study three related UDV: transfersomes, ethosomes, and transethosomes for the incorporation of actives of distinct polarities, namely, vitamin E and caffeine, and to evaluate the effect of the carrier on skin permeation and penetration. These actives were incorporated in UDV formulations further characterized for vesicles imaging by transmission electron microscopy; mean vesicle size and polydispersity index by photon correlation spectroscopy; zeta potential by laser-Doppler anemometry; deformability by pressure-driven transport; and incorporation efficiency (IE) after actives quantification by high-performance liquid chromatography. Topical delivery studies were performed in order to compare UDV formulations regarding the release, skin permeation, and penetration profiles. All UDV formulations showed size values within the expected range, except transethosomes prepared by “transfersomal method”, for which size was smaller than 100 nm in contrast to that obtained for vesicles prepared by “ethosomal method”. Zeta potential was negative and higher for formulations containing sodium cholate. The IE was much higher for vitamin E- than caffeine-loaded UDV as expected. For flux measurements, the following order was obtained: transethosomes (TE) > ethosomes (E) ≥ transfersomes (T). This result was consistent with the release and skin penetration profiles for Vitamin E-loaded UDV. However, the releasing results were totally the opposite for caffeine-loaded UDV, which might be explained by the solubility and thermodynamic activity of this active in each formulation instead of the UDV deformability attending to the higher non-incorporated fraction of caffeine. Anyway, a high skin penetration and permeation for all caffeine-loaded UDV were obtained. Transethosomes were more deformable than ethosomes and transfersomes due to the presence of both ethanol and surfactant in their composition. All these UDV were suitable for a deeper skin penetration, especially transethosomes.

Keywords: lipid vesicles, topical delivery studies, vitamin E, caffeine

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation

Liu DD, Pan H, He FW, Wang XY, Li JY, Yang XG, Pan WS

International Journal of Nanomedicine 2015, 10:6425-6434

Published Date: 13 October 2015

Free radical scavenging in vitro and biological activity of diphenyl diselenide-loaded nanocapsules: DPDS-NCS antioxidant and toxicological effects

Stefanello ST, Dobrachinski F, Carvalho NR, Amaral GP, Barcelos RP, Oliveira VA, Oliveira CS, Giordani CFA, Pereira ME, Rodrigues OED, Soares FAA

International Journal of Nanomedicine 2015, 10:5663-5670

Published Date: 4 September 2015

Potential toxicity of dental nanomaterials to the central nervous system

Solla DF, Paiva TS, André M, Paiva WS

International Journal of Nanomedicine 2015, 10:5593-5596

Published Date: 3 September 2015

Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

Lee SJ, Jeong YI, Park HK, Kang DH, Oh JS, Lee SG, Lee HC

International Journal of Nanomedicine 2015, 10:5489-5503

Published Date: 28 August 2015

Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells

Tran TH, Ramasamy T, Choi JY, Nguyen HT, Pham TT, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO

International Journal of Nanomedicine 2015, 10:5249-5262

Published Date: 21 August 2015

Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma

Wei MY, Guo XC, Tu LX, Zou Q, Li Q, Tang CY, Chen B, Xu YH, Wu CB

International Journal of Nanomedicine 2015, 10:5123-5137

Published Date: 12 August 2015