Back to Journals » Clinical Pharmacology: Advances and Applications » Volume 8

Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives

Authors Schmidt BZ, Haaf J, Leal T, Noel S

Received 5 July 2016

Accepted for publication 16 August 2016

Published 21 September 2016 Volume 2016:8 Pages 127—140

DOI https://doi.org/10.2147/CPAA.S100759

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Akshita Wason

Peer reviewer comments 2

Editor who approved publication: Professor Arthur Frankel


Béla Z Schmidt,1 Jérémy B Haaf,2 Teresinha Leal,2 Sabrina Noel,2

1Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, 2Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium

Abstract: Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.

Keywords: high-throughput screening, drug repositioning, personalized medicine, precision medicine, potentiators, correctors

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]