Back to Journals » Drug Design, Development and Therapy » Volume 14

Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments

Authors Ma C, Zhuang Z, Su Q, He J, Li H

Received 11 November 2019

Accepted for publication 22 January 2020

Published 4 February 2020 Volume 2020:14 Pages 509—518

DOI https://doi.org/10.2147/DDDT.S237830

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Anastasios Lymperopoulos


Chao Ma,1 Zongming Zhuang,1 Qisheng Su,2 Jianfeng He,1 Haoyu Li1

1Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China; 2Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China

Correspondence: Haoyu Li
Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
Email med.dr.lihy@gmail.com

Purpose: This study focused on the mechanism underlying the therapeutic effect of curcumin against tongue cancer (TC).
Methods: Target genes of TC and curcumin were identified, respectively. Three datasets of TC from Gene Expression Omnibus were included, and then the differentially expressed genes were collected. After combing the data from The Cancer Genome Atlas, bioinformatics analyses were performed to investigate hub genes in terms of the functions and correlations. The proliferation and migration of TC cells were evaluated with CCK-8 assay and scratch wound healing assay, respectively. Cell apoptosis was evaluated by TUNEL assay, flow cytometry and Western blot. Cell cycle was determined by flow cytometry.
Results: In this study, 15 hub genes were identified (TK1, TDRD3, TAGLN2, RNASEH2A, PDE2A, NCF2, MAP3K3, GPX3, GPD1L, GBP1, ENO1, CAT, ALDH6A1, AGPS and ACACB). They were mainly enriched in oxygen-related processes, such as oxidation-reduction process, reactive oxygen species metabolic process, hydrogen peroxide catabolic process, oxidoreductase activity and Peroxisome-related pathway. The expression levels of hub gene mRNAs were positively correlated with each other’s expression levels. None of the hub genes was correlated with prognosis (P > 0.05). Curcumin significantly inhibited CAL 27 cell proliferation and migration (P < 0.05), but significantly promoted cell apoptosis (P < 0.05).
Conclusion: Curcumin has potential therapeutic effect on treating TC by suppressing cell proliferation and migration, as well as promoting apoptosis through modulating oxygen-related signaling pathways.

Keywords: tongue neoplasms, curcumin, proliferation, apoptosis, migration, computational biology

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]