Back to Journals » International Journal of Nanomedicine » Volume 15

Copolymer Composition and Nanoparticle Configuration Enhance in vitro Drug Release Behavior of Poorly Water-soluble Progesterone for Oral Formulations

Authors Zhang Y, Zhang R, Illangakoon UE, Harker AH, Thrasivoulou C, Parhizkar M, Edirisinghe M, Luo CJ

Received 8 April 2020

Accepted for publication 30 May 2020

Published 29 July 2020 Volume 2020:15 Pages 5389—5403

DOI https://doi.org/10.2147/IJN.S257353

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Thomas Webster


Yue Zhang,1 Rui Zhang,1 Upulitha Eranka Illangakoon,1,2 Anthony Henry Harker,3 Christopher Thrasivoulou,4 Maryam Parhizkar,1,2 Mohan Edirisinghe,1 CJ Luo1

1Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; 2UCL School of Pharmacy, University College London, London WC1N 1AX, UK; 3Department of Physics & Astronomy, University College London, London WC1E 6BT, UK; 4Cell & Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK

Correspondence: CJ Luo Tel +44 20 7679 3942
Email chaojie.luo@ucl.ac.uk

Hypothesis: Developing oral formulations to enable effective release of poorly water-soluble drugs like progesterone is a major challenge in pharmaceutics. Coaxial electrospray can generate drug-loaded nanoparticles of strategic compositions and configurations to enhance physiological dissolution and bioavailability of poorly water-soluble drug progesterone.
Experiments: Six formulations comprising nanoparticles encapsulating progesterone in different poly(lactide-co-glycolide) (PLGA) matrix configurations and compositions were fabricated and characterized in terms of morphology, molecular crystallinity, drug encapsulation efficiency and release behavior.
Findings: A protocol of fabrication conditions to achieve 100% drug encapsulation efficiency in nanoparticles was developed. Scanning electron microscopy shows smooth and spherical morphology of 472.1± 54.8 to 588.0± 92.1 nm in diameter. Multiphoton Airyscan super-resolution confocal microscopy revealed core-shell nanoparticle configuration. Fourier transform infrared spectroscopy confirmed presence of PLGA and progesterone in all formulations. Diffractometry indicated amorphous state of the encapsulated drug. UV-vis spectroscopy showed drug release increased with hydrophilic copolymer glycolide ratio while core-shell formulations with progesterone co-dissolved in PLGA core exhibited enhanced release over five hours at 79.9± 1.4% and 70.7± 3.5% for LA:GA 50:50 and 75:25 in comparison with pure progesterone without polymer matrix in the core at 67.0± 1.7% and 57.5± 2.8%, respectively. Computational modeling showed good agreement with the experimental drug release behavior in vitro.

Keywords: core-shell nanoparticles, oral formulations, bioavailability, drug delivery, poorly water-soluble drugs, progesterone, poly, lactide-co-glycolide, PLGA, copolymer, coaxial electrospray

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]