Back to Browse Journals » Open Access Bioinformatics » Volume 2

Computational methods for the identification of microRNA targets

Authors Yang Dai, Xiaofeng Zhou

Published 3 May 2010 Volume 2010:2 Pages 29—39

DOI https://dx.doi.org/10.2147/OAB.S6902

Review by Single-blind

Peer reviewer comments 4

Yang Dai1, Xiaofeng Zhou2

1Department of Bioengineering, Department of Computer Science, College of Engineering, 2Center for Molecular Biology of Oral Diseases, College of Dentistry, and Graduate College, UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA

Abstract: MicroRNAs are pivotal regulators of development and cellular homeostasis. They act as post-transcriptional regulators, which control the stability and translation efficiency of their target mRNAs. The prediction of microRNA targets and detection of microRNA-mRNA regulatory modules (MRMs) are crucial components for understanding of microRNA functions. Numerous computational methods for microRNA target prediction have been developed. Computationally-predicted targets have been recently used in the integrative analysis of microRNA and mRNA expression analysis to identify microRNA targets and MRMs. In this article we review these recent developments in the integrative analysis methods. We also discuss the remaining challenges and our insights on future directions.

Keywords: microRNA target prediction, integrative analysis, microRNA regulatory mechanism, microRNA profiling, mRNA expression profiles

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010