Back to Journals » International Journal of Nanomedicine » Volume 6

Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing

Authors Wang Y, Zhang CL, Zhang Q, Li P

Published 5 April 2011 Volume 2011:6 Pages 667—676

DOI https://doi.org/10.2147/IJN.S17547

Review by Single-blind

Peer reviewer comments 3

Yan Wang1, Chen-lu Zhang2, Qun Zhang1, Ping Li1,3
1School of Life Sciences and Technology, Tongji University, Shanghai, People’s Republic of China; 2College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China; 3Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People’s Republic of China

Purpose: The objective of the present investigation was to evaluate the antibacterial properties and the biocompatibility of composite electrospun nanofibrous membranes (NFMs) with low-molecular-weight fish scale collagen peptides (FSCP) and chito-oligosaccharide (COS), to determine their potential for use as wound dressings.
Methods: Low-molecular-weight FSCP were combined with COS to prepare nanofibers by electrospinning, and polyvinyl alcohol (PVA) was used for enhancing fiber-forming ability. Transmission electron microscope and scanning electron microscope methods were used to observe bacterial adhesion and the bacterial cell membrane. Fibroblast cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Results: The best FSCP/COS mass ratio for electrospinning was 2:1, and the nanofibers had small dimensions ranging from 50 to 100 nm. The NFM showed good antibacterial activities against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial activity against S. aureus was higher than against E. coli. The pili and adhesive fimbriae of E. coli promoted bacterial adhesion to the NFM surfaces, and S. aureus biofilms aided S. aureus adhesion on the surface of NFMs. Damage to the bacterial cell membrane indicates that the NFMs could lead to the release of intracellular materials, particularly with S. aureus. In addition, FSCP/COS NFM rapidly increased the permeability of the outer membranes of E. coli. The electrospun NFM with FSCP and COS had good biocompatibility in vitro and supported proliferation of human skin fibroblasts.
Conclusion: FSCP are superior to mammalian collagen, and have feasibility and potency for wound dressings. FSCP/COS NFMs had good anti-bactericidal activity that improved with increased COS, and showed good biocompatibility in vitro and supported the proliferation of fibroblasts.

Keywords: composite electrospun nanomembranes, fish scale collagen peptides, bacterial adhesion, bacterial cell membrane, wound dressing

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J

International Journal of Nanomedicine 2012, 7:5881-5888

Published Date: 28 November 2012

A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations

Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin Ç, Güneri P, Ertan G

International Journal of Nanomedicine 2012, 7:5693-5704

Published Date: 9 November 2012

Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses

Sirc J, Kubinova S, Hobzova R, Stranska D, Kozlik P, Bosakova Z, Marekova D, Holan V, Sykova E, Michalek J

International Journal of Nanomedicine 2012, 7:5315-5325

Published Date: 8 October 2012

Erratum

Iancu C, Mocan L

International Journal of Nanomedicine 2011, 6:2543-2544

Published Date: 21 October 2011

Molecular network topology and reliability for multipurpose diagnosis

Jalil MA, Moongfangklang N, Innate K, Mitatha S, Ali J, Yupapin PP

International Journal of Nanomedicine 2011, 6:2385-2392

Published Date: 19 October 2011

Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S

International Journal of Nanomedicine 2011, 6:2375-2384

Published Date: 18 October 2011

Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy

Zhang M, Guo R, Wang Y, Cao X, Shen M, Shi X

International Journal of Nanomedicine 2011, 6:2337-2349

Published Date: 14 October 2011