Back to Journals » International Journal of Nanomedicine » Volume 14

Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect

Authors Yin J, Hou Y, Song X, Wang P, Li Y

Received 26 March 2019

Accepted for publication 8 May 2019

Published 31 May 2019 Volume 2019:14 Pages 4045—4057

DOI https://doi.org/10.2147/IJN.S210057

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Thiruganesh Ramasamy

Peer reviewer comments 2

Editor who approved publication: Dr Mian Wang


Juntao Yin,1 Yantao Hou,2 Xiaoyong Song,3 Peiqing Wang,1 Yang Li1

1Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People’s Republic of China; 2Henan Vocational College of Applied Technology, Kaifeng, People’s Republic of China; 3School of Pharmacy, Henan University, Kaifeng, People’s Republic of China

Background: Quercetin (QUE) shows a potential antileukemic activity, but possesses poor solubility and low bioavailability.
Purpose: This article explored the bile salt transport pathway for oral deliver of QUE using cholate-modified polymer-lipid hybrid nanoparticles (cPLNs) aiming to enhance its antileukemic effect.
Methods: QUE-loaded cPLNs (QUE-cPLNs) were developed through a nanoprecipitation technique and characterized by particle size, entrapment efficiency (EE), microscopic morphology and in vitro drug release. In vitro cellular uptake and cytotoxicity of QUE-cPLNs were examined on Caco-2 and P388 cells; in vivo pharmacokinetics and antileukemic effect were evaluated using Sprague Dawley rats and leukemic model mice, respectively.
Results: The prepared QUE-cPLNs possessed a particle size of 110 nm around with an EE of 96.22%. QUE-cPLNs resulted in significantly enhanced bioavailability of QUE, up to 375.12% relative to the formulation of suspensions. In addition, QUE-cPLNs exhibited excellent cellular uptake and internalization capability compared to cholate-free QUE-PLNs. The in vitro cytotoxic and in vivo antileukemic effects of QUE-cPLNs were also signally superior to free QUE and QUE-PLNs.
Conclusion: These findings indicate that cPLNs are a promising nanocarrier able to improve the oral bioavailability and therapeutic index of QUE.

Keywords: quercetin, polymer-lipid hybrid nanoparticles, bile salt, bioavailability, leukemia


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]