Back to Journals » International Journal of Nanomedicine » Volume 6

Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

Authors Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D

Published 9 November 2011 Volume 2011:6 Pages 2805—2819

DOI https://doi.org/10.2147/IJN.S24596

Review by Single-blind

Peer reviewer comments 2

Yuntao Li1,2, Jing Liu1, Yuejiao Zhong3, Jia Zhang1, Ziyu Wang1, Li Wang1, Yanli An1, Mei Lin1, Zhiqiang Gao2, Dongsheng Zhang1
1School of Medicine, Southeast University, Nanjing, Jiangsu Province, People's Republic of China; 2Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; 3Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China

Purpose: This research was conducted to assess the biocompatibility of the core-shell Fe3O4@Au composite magnetic nanoparticles (MNPs), which have potential application in tumor hyperthermia.
Methods: Fe3O4@Au composite MNPs with core-shell structure were synthesized by reduction of Au3+ in the presence of Fe3O4-MNPs prepared by improved co-precipitation. Cytotoxicity assay, hemolysis test, micronucleus (MN) assay, and detection of acute toxicity in mice and beagle dogs were then carried out.
Results: The result of cytotoxicity assay showed that the toxicity grade of this material on mouse fibroblast cell line (L-929) was classified as grade 1, which belongs to no cytotoxicity. Hemolysis rates showed 0.278%, 0.232%, and 0.197%, far less than 5%, after treatment with different concentrations of Fe3O4@Au composite MNPs. In the MN assay, there was no significant difference in MN formation rates between the experimental groups and negative control (P > 0.05), but there was a significant difference between the experimental groups and the positive control (P < 0.05). The median lethal dose of the Fe3O4@Au composite MNPs after intraperitoneal administration in mice was 8.39 g/kg, and the 95% confidence interval was 6.58-10.72 g/kg, suggesting that these nanoparticles have a wide safety margin. Acute toxicity testing in beagle dogs also showed no significant difference in body weight between the treatment groups at 1, 2, 3, and 4 weeks after liver injection and no behavioral changes. Furthermore, blood parameters, autopsy, and histopathological studies in the experimental group showed no significant difference compared with the control group.
Conclusion: The results indicate that Fe3O4@Au composite MNPs appear to be highly biocompatible and safe nanoparticles that are suitable for further application in tumor hyperthermia.

Keywords: toxicity, hyperthermia, core-shell


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

Guo H, Wei J, Song WH, Zhang S, Yan YG, Liu CS, Xiao TQ

International Journal of Nanomedicine 2012, 7:3613-3624

Published Date: 11 July 2012

Erratum

Iancu C, Mocan L

International Journal of Nanomedicine 2011, 6:2543-2544

Published Date: 21 October 2011

Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles

Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S, Tamar G, Shneor R, Guez D, Margel S, Mardor Y

International Journal of Nanomedicine 2011, 6:1595-1602

Published Date: 3 August 2011

Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D, Frerich B, Vollmar B, Gerber T

International Journal of Nanomedicine 2011, 6:1543-1552

Published Date: 2 August 2011

Topical diclofenac in the treatment of osteoarthritis of the knee

Niklas Schuelert, Fiona A Russell, Jason J McDougall

Orthopedic Research and Reviews 2011, 3:1-8

Published Date: 6 February 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010