Back to Browse Journals » International Journal of Nanomedicine » Volume 5

Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model

Authors Muthu Irulappan Sriram, Selvaraj Barath Mani Kanth, Kalimuthu Kalishwaralal, et al

Published 24 September 2010 Volume 2010:5 Pages 753—762

DOI https://doi.org/10.2147/IJN.S11727

Review by Single-blind

Peer reviewer comments 2

Muthu Irulappan Sriram, Selvaraj Barath Mani Kanth, Kalimuthu Kalishwaralal, Sangiliyandi Gurunathan
Department of Biotechnology, Division of Molecular and Cellular Biology, Kalasalingam University, Tamilnadu, India

Abstract: Nanomedicine concerns the use of precision-engineered nanomaterials to develop novel therapeutic and diagnostic modalities for human use. The present study demonstrates the efficacy of biologically synthesized silver nanoparticles (AgNPs) as an antitumor agent using Dalton’s lymphoma ascites (DLA) cell lines in vitro and in vivo. The AgNPs showed dose-dependent cytotoxicity against DLA cells through activation of the caspase 3 enzyme, leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. Acute toxicity, ie, convulsions, hyperactivity and chronic toxicity such as increased body weight and abnormal hematologic parameters did not occur. AgNPs significantly increased the survival time in the tumor mouse model by about 50% in comparison with tumor controls. AgNPs also decreased the volume of ascitic fluid in tumor-bearing mice by 65%, thereby returning body weight to normal. Elevated white blood cell and platelet counts in ascitic fluid from the tumor-bearing mice were brought to near-normal range. Histopathologic analysis of ascitic fluid showed a reduction in DLA cell count in tumor-bearing mice treated with AgNPs. These findings confirm the antitumor properties of AgNPs, and suggest that they may be a cost-effective alternative in the treatment of cancer and angiogenesis-related disorders.

Keywords: antitumor, silver nanoparticles, Dalton’s lymphoma, ascites

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

Bai D, Zhang X, Zhang G, Huang Y, Gurunathan S

International Journal of Nanomedicine 2017, 12:6521-6535

Published Date: 5 September 2017

Silver nanoparticles cause complications in pregnant mice

Zhang XF, Park JH, Choi YJ, Kang MH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:7057-7071

Published Date: 13 November 2015

Effects of silver nanoparticles on neonatal testis development in mice

Zhang XF, Gurunathan S, Kim JH,

International Journal of Nanomedicine 2015, 10:6243-6256

Published Date: 5 October 2015

Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH

International Journal of Nanomedicine 2015, 10:6257-6276

Published Date: 5 October 2015

Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

Zhang XF, Choi YJ, Han JW, Kim ES, Park JH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:1335-1357

Published Date: 16 February 2015

An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

Gurunathan S, Han J, Park JH, Kim JH

International Journal of Nanomedicine 2014, 9:1783-1797

Published Date: 8 April 2014

Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene

Gurunathan S, Han JW, Park JH, Eppakayala V, Kim JH

International Journal of Nanomedicine 2014, 9:363-377

Published Date: 7 January 2014

Green chemistry approach for the synthesis of biocompatible graphene

Gurunathan S, Han JW, Kim JH

International Journal of Nanomedicine 2013, 8:2719-2732

Published Date: 31 July 2013

Green synthesis of graphene and its cytotoxic effects in human breast cancer cells

Gurunathan S, Han JW, Eppakayala V, Kim JH

International Journal of Nanomedicine 2013, 8:1015-1027

Published Date: 10 March 2013

Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH

International Journal of Nanomedicine 2012, 7:5901-5914

Published Date: 30 November 2012

Readers of this article also read:

Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH

International Journal of Nanomedicine 2015, 10:6257-6276

Published Date: 5 October 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010