Back to Journals » ImmunoTargets and Therapy » Volume 7

Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer

Authors Belzile O, Huang X, Gong J, Carlson J, Schroit AJ, Brekken RA, Freimark BD

Received 6 September 2017

Accepted for publication 27 October 2017

Published 23 January 2018 Volume 2018:7 Pages 1—14


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Professor Michael Shurin

Olivier Belzile,1 Xianming Huang,2,3 Jian Gong,2,3 Jay Carlson,2,3 Alan J Schroit,1 Rolf A Brekken,1 Bruce D Freimark2,3

1Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 2Department of Preclinical Research, 3Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA

Abstract: Phosphatidylserine (PS) is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer.

Keywords: immunosuppression, tumor microenvironment, immunotherapy, imaging, phosphatidylserine, bavituximab

A Letter to the Editor has been received and published for this article. 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]