Back to Journals » Therapeutics and Clinical Risk Management » Volume 6

Antibiotic optimization in the difficult-to-treat patient with complicated intra-abdominal or complicated skin and skin structure infections: focus on tigecycline

Authors Reygaert W

Published 6 September 2010 Volume 2010:6 Pages 419—430


Review by Single-blind

Peer reviewer comments 2

Wanda C Reygaert

Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA

Abstract: Complicated intra-abdominal and skin and skin structure infections are widely varied in presentation. These infections very often lead to an increase in length of hospital stay, with a resulting increase in costs and mortality. In addition, these infections may be caused by a wide variety of bacteria and are often polymicrobial with the possibility of the presence of antimicrobial-resistant strains, such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum β-lactamase strains (Escherichia coli, Klebsiella pneumoniae), and K. pneumoniae carbapenemase-producing strains. In combination with patients’ immunosuppression or comorbidities, the treatment and management options for initial therapy success are few. Tigecycline, a new glycylcyline antimicrobial from the tetracycline drug class, represents a viable option for the successful treatment of these infections. It has been shown to have activity against a wide variety of bacteria, including the antimicrobial-resistant strains. As with all tetracycline drugs, it is not recommended for pregnant or nursing women. The potential side effects are those typical of tetracycline drugs: nausea, vomiting, and headaches. Drug–drug interactions are not expected, and renal function monitoring is not necessary.

Keywords: complicated intra-abdominal infections, complicated skin and skin structure infections, tigecycline

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 


Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010