Back to Browse Journals » Neurobehavioral HIV Medicine » Volume 3

Anti-HIV-1 drug toxicity and management strategies

Authors Sharma B

Published Date April 2011 Volume 2011:3 Pages 27—40

DOI http://dx.doi.org/10.2147/NBHIV.S11748

Published 28 April 2011

Bechan Sharma
Department of Biochemistry, University of Allahabad, Allahabad, India

Abstract: Antihuman immunodeficiency virus type 1 (anti-HIV-1) medications have helped millions of HIV-1-infected people lead longer and healthier lives. The goal of HIV-1 treatment is to reduce the number of virions in the body of infected individuals and to prevent rapid destruction of CD4+ T-lymphocyte cells, thus protecting the immune system. Most of the anti-HIV-1 drugs in practice are designed using viral reverse transcriptase (HIV-1RT), protease, and integrase as targets. These drugs that inhibit the activities of HIV-1RT, viral protease, and integrase are therefore known as anti-HIV-1RT, antiprotease, and anti-integrase molecules, respectively. The US Food and Drug Administration has approved 22 anti-HIV-1/acquired immunodeficiency syndrome (AIDS) drugs for clinical use by HIV-1-infected individuals and AIDS patients. Among the drugs, most of the nucleoside analogs (excluding two isomers of 3TC, (-)3TC and (+)3TC, which are shown to be less toxic in cell culture) exhibit clinical complications that pose a threat to chemotherapy. The toxicity of these molecules arises due to their negative impact on the activities of human mitochondrial chromosomal DNA polymerases (a, d, ß, and e) in general and DNA polymerase γ in particular. Other anti-HIV-1 regimens are also reported to cause toxicity. The range of toxicity extends from mild to life-threatening levels. The prolonged use of zidovudine (3′-azido-3′-deoxythymidine [AZT] or Retrovir), which was first approved in 1987 as a nucleoside analog reverse transcriptase inhibitor, has been reported to cause severe hematologic toxicity, including severe anemia, granulocytopenia, and symptomatic myopathy. Many other drugs that are often used in combination with AZT have similar toxicities. The newer antiretrovirals (ARVs), such as 2′,3′-dideoxycytidine, 2′,3′-dideoxyinosine, and 2′,3′-dideoxy-2′,3′-didehydrothymidine, which exhibit analogous mechanisms of action and similar toxicities to AZT, have not been studied extensively. Acyclovir and gancyclovir can cause severe nausea and vomiting. Some of these ARVs when taken during pregnancy may generate teratogenic effects. Similarly, use of antiproteases in highly active ARV therapy causes hepatotoxicity, which poses a severe risk to the patients. In addition, application of fusion inhibitors and anti-integrases induces strong side effects in HIV-1-infected or AIDS patients. The present review illustrates a comprehensive analysis of the existing literature on the toxicity of anti-HIV-1/AIDS drugs, their mechanisms of action, and possible management strategies to combat this problem.

Keywords: HIV-1, AIDS, anti-HIV-1RT drugs, antiproteases, anti-integrases, fusion inhibitors, dosage, toxicity, management

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Low temperature induced alterations in certain biochemical constituents of 5th instar larvae of Philosamia ricini (Lepidoptera: Satunidae)

Anita Singh, Ratnesh Kr Sharma, Bechan Sharma

Open Access Insect Physiology 2010, 2:11-16

Published Date: 7 July 2010

Readers of this article also read:

Toxicology of antimicrobial nanoparticlesfor prosthetic devices

Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, de la Fuente-Hernández J, Castaño VM

International Journal of Nanomedicine 2014, 9:3999-4006

Published Date: 20 August 2014

Apolipoprotein-E genotype and human immunodeficiency virus-associated neurocognitive disorder: the modulating effects of older age and disease severity

Panos SE, Hinkin CH, Singer EJ, Thames AD, Patel SM, Sinsheimer JS, Del Re AC, Gelman BB, Morgello S, Moore DJ, Levine AJ

Neurobehavioral HIV Medicine 2013, 5:11-22

Published Date: 19 June 2013

Management issues in HIV-associated neurocognitive disorders

Cysique LA, Bain MP, Lane TA, Brew BJ

Neurobehavioral HIV Medicine 2012, 4:63-73

Published Date: 11 July 2012

Corrigendum

Hong SH, Kim JE, Kim YK, Minai-Tehrani A, Shin JY, Kang B, Kim HJ, Cho CS, Chae C, Jiang HL, Cho MH

International Journal of Nanomedicine 2012, 7:3069-3070

Published Date: 20 June 2012

Immune activation and neuropsychiatric symptoms in human immunodeficiency virus type 1 infection

Schroecksnadel S, Kurz K, Weiss G, Fuchs D

Neurobehavioral HIV Medicine 2012, 4:1-13

Published Date: 16 January 2012

Depression, alcohol abuse, and disclosure of HIV serostatus among rural HIV-positive individuals in western Uganda

Nakimuli-Mpungu E, Munyaneza G

Neurobehavioral HIV Medicine 2011, 3:19-25

Published Date: 14 April 2011

Development of neurocognitive disorders in HIV/AIDS

Brandon C Dennis, Sidney A Houff, Dong Y Han, et al

Neurobehavioral HIV Medicine 2011, 3:9-18

Published Date: 10 March 2011

Treatment of adult ADHD: Is current knowledge useful to clinicians?

Terje Torgersen, Bjørn Gjervan, Kirsten Rasmussen

Neuropsychiatric Disease and Treatment 2008, 4:177-186

Published Date: 4 March 2008