Back to Journals » Nanotechnology, Science and Applications » Volume 2

Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

Authors Jiang B, Barnett JB, Li B 

Published 5 August 2009 Volume 2009:2 Pages 21—27


Review by Single anonymous peer review

Peer reviewer comments 3

Bingbing Jiang1, John B Barnett2,3, Bingyun Li1,4,5#

1Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, 2Department of Microbiology, Immunology, and Cell Biology, 3Center for Immunopathology and Microbial Pathogenesis, School of Medicine, 5Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA; 4WVNano Initiative, Morgantown, WV, USA; #Aided by a grant from Osteosynthesis and Trauma Care (OTC) Foundation

Abstract: There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications.

Keywords: nanofilm, polyelectrolyte multilayer, drug delivery, electrostatic layer-by-layer self-assembly, biomedical device, surface modification

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.