Back to Journals » Therapeutics and Clinical Risk Management » Volume 6

A review of the applications of the hydrofiber dressing with silver (Aquacel Ag®) in wound care

Authors Barnea Y, Weiss J, Gur E

Published 23 December 2009 Volume 2010:6 Pages 21—27

DOI https://doi.org/10.2147/TCRM.S3462

Review by Single-blind

Peer reviewer comments 2

Yoav Barnea, Jerry Weiss, Eyal Gur

Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel

Abstract: Aquacel Ag® (ConvaTec, Princeton, NJ, USA) is a new hydrofiber wound dressing consisting of soft non-woven sodium carboxymethylcellulose fibers integrated with ionic silver. It is a moisture-retention dressing, which forms a gel on contact with wound fluid and has antimicrobial properties of ionic silver. We present a current literature review on Aquacel Ag®, of both in vitro and in vivo efficacy and clinical applications. In vitro and in vivo studies have demonstrated the wide antimicrobial properties of Aquacel Ag®, and additionally demonstrated the cytotoxicity of ionic silver to keratinocytes and fibroblasts that cause delay in wound re-epithelialization. Clinical studies confirmed that Aquacel Ag® is an effective and safe dressing for a variety of wound types, both acute and chronic. Incorporation of ionic silver into the hydrofibers does not cause undue alteration in the performance properties of the base dressing, which continues to provide favorable wound moisture and exudate management. The addition of ionic silver reduces local pain and dressing changes, and provides significant broad-spectrum antimicrobial properties, with no delay in wound healing.

Keywords: Aquacel Ag®, silver, wound dressing, hydrofiber, carboxymethylcellulose

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010