Back to Journals » Medical Devices: Evidence and Research » Volume 6

A laminar flow unit for the care of critically ill newborn infants

Authors Perez JMR, Golombek SG, Fajardo C, Sola A

Received 9 July 2013

Accepted for publication 30 July 2013

Published 17 October 2013 Volume 2013:6 Pages 163—167


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Video abstract presented by Jose MR Perez

Views: 1848

Jose MR Perez,1 Sergio G Golombek,2 Carlos Fajardo,3 Augusto Sola4

1Stella Maris Hospital, International Neurodevelopment Neonatal Center (CINN), Sao Paulo, Brazil; 2M Fareri Children’s Hospital, Westchester Medical Center, New York Medical College, Valhalla, NY, USA; 3University of Calgary, Calgary, Canada; 4St Jude Hospital, Fullerton, California, CA, USA

Introduction: Medical and nursing care of newborns is predicated on the delicate control and balance of several vital parameters. Closed incubators and open radiant warmers are the most widely used devices for the care of neonates in intensive care; however, several well-known limitations of these devises have not been resolved. The use of laminar flow is widely used in many fields of medicine, and may have applications in neonatal care.
Objective: To describe the neonatal laminar flow unit, a new equipment we designed for care of ill newborns.
Methods: The idea, design, and development of this device was completed in Sao Paulo, Brazil. The unit is an open mobile bed designed with the objective of maintaining the advantages of the incubator and radiant warmer, while overcoming some of their inherent shortcomings; these shortcomings include noise, magnetic fields and acrylic barriers in incubators, and lack of isolation and water loss through skin in radiant warmers. The unit has a pump that aspirates environmental air which is warmed by electrical resistance and decontaminated with High Efficiency Particulate Air Filter (HEPA) filters (laminar flow). The flow is directed by an air flow directioner. The unit has an embedded humidifier to increase humidity in the infant’s microenvironment and a servo control mechanism for regulation of skin temperature.
Results: The laminar flow unit is open and facilitates access of care providers and family, which is not the case in incubators. It provides warming by convection at an air velocity of 0.45 m/s, much faster than an incubator (0.1 m/s). The system provides isolation 1000 class (less than 1,000 particles higher than 0.3 micron per cubic feet at all times). This is much more protection than an incubator provides and more than radiant warmers, which have no isolation whatsoever. Additionally, it provides humidification of the newborn’s microenvironment (about 60% relative humidity), which is impossible with a radiant warmer, which produces high water body loss. It has no mechanical barriers like acrylic walls, its magnetic field is lower than an incubator (0.25 µt versus 1.2 µt), and the noise is minimal compared to incubators. The unit is also able to provide controlled total body hypothermia, which is not possible with either of the other two units.
Conclusion: The laminar flow unit for neonatal care is a novel device which we recently developed. The introduction of laminar flow technology represents a real innovation in the neonatal field. We have described the various components of the unit and the potential advantages for management of ill neonates. This will hopefully lead to improved clinical outcomes and more effective neonatal management and safety.

laminar flow, newborn intensive care, incubator, radiant warmer

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.