Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis

Authors Salmazi R, Calixto G, Bernegossi J, dos Santos Ramos MA, Bauab TM, Chorilli M

Received 7 February 2015

Accepted for publication 16 April 2015

Published 30 July 2015 Volume 2015:10(1) Pages 4815—4824


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J Webster

Rafael Salmazi, Giovana Calixto, Jéssica Bernegossi, Matheus Aparecido dos Santos Ramos, Taís Maria Bauab, Marlus Chorilli

School of Pharmaceutical Sciences, UNESP – Sao Paulo State University, Campus Araraquara, Department of Drugs and Medicines, Araraquara, Sao Paulo, Brazil

Abstract: Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis.

Keywords: nanostructured drug delivery systems, liquid crystalline systems, mucoadhesive polymers, vaginal administration, Candida albicans

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms

Calixto GMF, Duque C, Aida KL, Santos VR, Massunari L, Chorilli M

International Journal of Nanomedicine 2018, 13:31-41

Published Date: 19 December 2017

Nanotechnology-based drug delivery systems for treatment of oral cancer: a review

Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M

International Journal of Nanomedicine 2014, 9:3719-3735

Published Date: 8 August 2014

Readers of this article also read:

Effects of silver nanoparticles on neonatal testis development in mice

Zhang XF, Gurunathan S, Kim JH,

International Journal of Nanomedicine 2015, 10:6243-6256

Published Date: 5 October 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring

Rajaram K, Losada-Pérez P, Vermeeren V, Hosseinkhani B, Wagner P, Somers V, Michiels L

International Journal of Nanomedicine 2015, 10:5237-5247

Published Date: 19 August 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010