Back to Journals » International Journal of Nanomedicine » Volume 12

A charge-reversible nanocarrier using PEG-PLL(-g-Ce6, DMA)-PLA for photodynamic therapy

Authors Lim C, Sim T, Hoang NH, Jung CE, Lee ES, Youn YS, Oh KT

Received 30 May 2017

Accepted for publication 19 July 2017

Published 24 August 2017 Volume 2017:12 Pages 6185—6196

DOI https://doi.org/10.2147/IJN.S142912

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster


Chaemin Lim,1 Taehoon Sim,1 Ngoc Ha Hoang,2 Chan Eun Jung,1 Eun Seong Lee,3 Yu Seok Youn,4 Kyung Taek Oh1

1Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, South Korea; 2Department of Pharmaceutics, Ha Noi University of Pharmacy, Ha Noi, Vietnam; 3Division of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, 4Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea

Abstract: A polyelectrolyte nanoparticle composed of PEG-PLL(-g-Ce6, DMA)-PLA was developed for nanomedicinal application in photodynamic therapy. These nanoparticles formed stable aggregates through the hydrophobic interaction of poly(lactic acid) and demonstrated pH-dependent behaviors such as surface charge conversion and enhanced cellular uptake at acidic pH, resulting in improved phototoxicity. In vivo animal imaging revealed that the prepared PEG-PLL(-g-Ce6, DMA)-PLA nanoparticles effectively accumulated at the targeted tumor site through enhanced permeability and retention effects. Reversible surface charge for PEG-PLL(-g-Ce6, DMA)-PLA nanoparticles allows the nanoparticles to escape the immune system and concentrate on the tumor tissue. Tumor growth in the nude mice treated with the nanoparticles decreased significantly and the hydrophobic interaction in the poly(lactic acid) block could allow the incorporation of multiple drugs. Therefore, the PEG-PLL(-g-Ce6, DMA)-PLA nanoparticles could have considerable potential as a nanomedicinal platform for photodynamic therapy.

Keywords: apoptosis, chlorin e6, polyelectrolyte, pH sensitive, charge conversion, nano­medicine
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]