Back to Journals » Drug Design, Development and Therapy » Volume 9

6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

Authors Ghareib S, El-Bassossy H, Elberry A, Azhar A, Watson M, Banjar Z

Received 13 August 2015

Accepted for publication 14 October 2015

Published 9 November 2015 Volume 2015:9 Pages 6019—6026


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Wei Duan

Salah A Ghareib,1 Hany M El-Bassossy,1,2 Ahmed A Elberry,3,4 Ahmad Azhar,5 Malcolm L Watson,6 Zainy Mohammed Banjar7

1Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 3Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 4Department of Pharmacology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt; 5Department of Pediatric Cardiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 6Department of Pharmacy and Pharmacology, University of Bath, Bath, UK; 7Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract: The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg-1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 µM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride (100 µM), guanylate cyclase inhibitor methylene blue (5 µM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 µM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 µM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-L-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially attributed to its ability to increase the production of NO and stimulation of cyclic guanosine monophosphate.

Keywords: diabetes, 6-gingerol, vasorelaxant, nitric oxide, advanced glycation end products, vascular complications

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]