Back to Journals » Neuropsychiatric Disease and Treatment » Volume 17
Vagal Nerve Stimulation Protects Against Cerebral Ischemia–Reperfusion Injury in Rats by Inhibiting Autophagy and Apoptosis
Authors Zhang LN, Zhang XW, Li CQ, Guo J, Chen YP, Chen SL
Received 8 January 2021
Accepted for publication 1 March 2021
Published 25 March 2021 Volume 2021:17 Pages 905—913
DOI https://doi.org/10.2147/NDT.S300535
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 2
Editor who approved publication: Dr Yuping Ning
Li-Na Zhang,1,* Xian-Wei Zhang,1,* Chang-Qing Li,2 Jing Guo,1 Yong-Ping Chen,1 Sheng-Li Chen1
1Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China; 2Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
*These authors contributed equally to this work
Correspondence: Sheng-Li Chen
Department of Neurology, Chongqing University Three Gorges Hospital, Number 165 Xincheng Road, Wanzhou District, Chongqing, 404000, People’s Republic of China
Tel +86 58103452
Fax +86 58103668
Email [email protected]
Background: Cumulative evidence suggests that neuronal death including autophagy, apoptosis, and necrosis is closely related to the occurrence and development of cerebral ischemia–reperfusion (I/R) injury. Moreover, vagal nerve stimulation (VNS) is involved in many different neuroprotective and neuroplasticity pathways. Thus, VNS may be a novel approach for treating various neurodegenerative diseases. The present study aims to determine whether VNS protects against cerebral I/R injury in rats by inhibiting autophagy and apoptosis.
Methods: Cerebral I/R injury is induced by middle cerebral artery occlusion (MCAO) and VNS is carried out. Infarct volume, neurological deficit, autophagy, and apoptosis are examined 24 h after reperfusion.
Results: Vagal nerve stimulation decreases infarct volume and suppresses neurological deficit. Moreover, obvious autophagy and apoptosis are detected in rats that have undergone I/R, and VNS inhibits autophagy and apoptosis.
Conclusion: Vagal nerve stimulation exerts neuroprotective effects following I/R injury by inhibiting autophagy and apoptosis.
Keywords: vagal nerve stimulation, cerebral ischemia–reperfusion injury, autophagy, apoptosis
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.
By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.