Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo

Authors Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, Yuan A, Liu J, Li D, Zheng C, Zhang G, Li X, Yang B, Sun H 

Received 14 March 2013

Accepted for publication 10 June 2013

Published 13 August 2013 Volume 2013:8(1) Pages 2985—2995

DOI https://doi.org/10.2147/IJN.S45184

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Chunyan Qiao,1,* Kai Zhang,2,* Han Jin,1 Leiying Miao,3 Ce Shi,1 Xia Liu,1 Anliang Yuan,1 Jinzhong Liu,1 Daowei Li,1 Changyu Zheng,4 Guirong Zhang,5 Xiangwei Li,1 Bai Yang,2 Hongchen Sun1

1Department of Pathology, School of Stomatology, Jilin University, Changchun, 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 3Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, People's Republic of China; 4Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 5Department of Biochemistry, School of Basic Medicine, Jilin University, Changchun, People's Republic of China

*These authors contributed equally to this work

Abstract: Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2) plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI) to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid) (PLGA) to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3–15 µm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7 and I type collagen (COLL I), and finally induce MC3T3-E1 cell differentiation. Importantly, in vivo data from micro-computed tomography (micro-CT) and histological staining demonstrated that the human BMP-2 released from PLGA@pBMP-2/PEI had a long-term effect locally and efficiently promoted bone formation in the bone defect area compared to control animals. All our data suggest that our PLGA-nanoparticle delivery system efficiently and functionally delivers the human BMP-2 cDNA and has potential clinical application in the future after further modification.

Keywords: gene therapy, bone regeneration, biodegradable polymer, human BMP-2

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.