Back to Archived Journals » Journal of Neurorestoratology » Volume 4

Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease

Authors Chen C, Duan J, Shen A, Wang W, Song H, Liu Y, Lu X, Wang X, You Z, Han Z, Han F

Received 21 October 2015

Accepted for publication 4 December 2015

Published 4 April 2016 Volume 2016:4 Pages 23—33

DOI https://doi.org/10.2147/JN.S98835

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Tajinder Dhammu

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Hari Shanker Sharma


Chao Chen,1,* Jing Duan,1,* Aifang Shen,2,* Wei Wang,1 Hao Song,1 Yanming Liu,1 Xianjie Lu,1 Xiaobing Wang,2 Zhiqing You,1 Zhongchao Han,3,4 Fabin Han1

1Center for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 2Department of Gynecology and Obstetrics, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 3The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Peking Union of Medical College, Tianjin, People's Republic of China; 4National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, People's Republic of China

*These authors contributed equally to this work

Abstract:
Human umbilical cord blood-derived mononuclear cells (hUCB-MNCs) were reported to have neurorestorative capacity for neurological disorders such as stroke and traumatic brain injury. This study was performed to explore if hUCB-MNC transplantation plays any therapeutic effects for Parkinson's disease (PD) in a 6-OHDA-lesioned rat model of PD. hUCB-MNCs were isolated from umbilical cord blood and administered to the striatum of the 6-OHDA-lesioned rats. The apomorphine-induced locomotive turning-overs were measured to evaluate the improvement of motor dysfunctions of the rats after administration of hUCB-MNCs. We observed that transplanted hUCB-MNCs significantly improve the motor deficits of the PD rats and that grafted hUCB-MNCs integrated to the host brains and differentiated to neurons and dopamine neurons in vivo after 16 weeks of transplantation. Our study provided evidence that transplanted hUCB-MNCs play therapeutic effects in a rat PD model by differentiating to neurons and dopamine neurons.

Keywords: hUCB-MNCs, Parkinson's disease, transplantation, differentiation, dopamine neurons
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]