Back to Journals » Clinical Ophthalmology » Volume 7

Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200)

Authors Kanellopoulos AJ , Asimellis G

Received 27 November 2012

Accepted for publication 17 January 2013

Published 3 April 2013 Volume 2013:7 Pages 675—683


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Video abstract presented by A John Kanellopoulos

Views: 4085

A John Kanellopoulos,1,2 George Asimellis1 Institute, Athens, Greece; 2NYU Medical School, New York, USA

Purpose: To evaluate programmed versus achieved laser-assisted in situ keratomileusis (LASIK) flap central thickness and investigate topographic flap thickness variability, as well as the effect of potential epithelial remodeling interference on flap thickness variability.
Patients and methods: Flap thickness was investigated in 110 eyes that had had bilateral myopic LASIK several years ago (average 4.5 ± 2.7 years; range 2–7 years). Three age-matched study groups were formed, based on the method of primary flap creation: Group A (flaps made by the Moria Surgical M2 microkeratome [Antony, France]), Group B (flaps made by the Abbott Medical Optics IntraLase™ FS60 femtosecond laser [Santa Ana, CA, USA]), and Group C (flaps made by the Alcon WaveLight® FS200 femtosecond laser [Fort Worth, TX, USA]). Whole-cornea topographic maps of flap and epithelial thickness were obtained by scanning high-frequency ultrasound biomicroscopy. On each eye, topographic flap and epithelial thickness variability was computed by the standard deviation of thickness corresponding to 21 equally spaced points over the entire corneal area imaged.
Results: The average central flap thickness for each group was 138.33 ± 12.38 µm (mean ± standard deviation) in Group A, 128.46 ± 5.72 µm in Group B, and 122.00 ± 5.64 µm in Group C. Topographic flap thickness variability was 9.73 ± 4.93 µm for Group A, 8.48 ± 4.23 µm for Group B, and 4.84 ± 1.88 µm for Group C. The smaller topographic flap thickness variability of Group C (FS200) was statistically significant compared with that of Group A (M2) (P = 0.004), indicating improved topographic flap thickness consistency – that is, improved precision – over the entire flap area affected.
Conclusions: The two femtosecond lasers produced a smaller flap thickness and reduced variability than the mechanical microkeratome. In addition, our study suggests that there may be a significant difference in topographic flap thickness variability between the results achieved by the two femtosecond lasers examined.

Keywords: Moria M2, IntraLase FS60, WaveLight® FS200, Allegretto Wave® Eye-Q, 400 Hz excimer, ultrasound biomicroscopy

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.