Back to Journals » Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy » Volume 13

The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial

Authors LeBaron TW, Singh RB, Fatima G, Kartikey K, Sharma JP, Ostojic SM, Gvozdjakova A, Kura B, Noda M, Mojto V, Niaz MA, Slezak J

Received 26 November 2019

Accepted for publication 3 March 2020

Published 24 March 2020 Volume 2020:13 Pages 889—896


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Ming-Hui Zou

Tyler W LeBaron,1,2 Ram B Singh,3 Ghizal Fatima,4 Kumar Kartikey,3 Jagdish P Sharma,3 Sergej M Ostojic,5,6 Anna Gvozdjakova,7 Branislav Kura,2 Mami Noda,8 Viliam Mojto,9 Mohammad Arif Niaz,10 Jan Slezak1

1Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic; 2Molecular Hydrogen Institute, Enoch, UT, USA; 3Hospital and Research Institute, Moradabad, India; 4Era Medical College, Lucknow, India; 5Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia; 6Faculty of Health Sciences, University of Pécs, Pécs, Hungary; 7Medical Faculty, Pharmacobiochemical Laboratory of 3rd Medical Department, Comenius University Bratislava, Bratislava, Slovakia; 8Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; 9Third Internal Clinic, Faculty of Medicine, Comenius University, Bratislava, Slovakia; 10Center of Nutrition Research, International College of Nutrition, Moradabad, India

Correspondence: Jan Slezak
Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 841 04, Slovak Republic
Tel +421 903 620 181

Purpose: Metabolic syndrome is associated with several medical risk factors including dyslipidemia, hyperglycemia, and obesity, which has become a worldwide pandemic. The sequelae of this condition increase the risk of cardiovascular and neurological disease and increased mortality. Its pathophysiology is associated with redox dysregulation, excessive inflammation, and perturbation of cellular homeostasis. Molecular hydrogen (H2) may attenuate oxidative stress, improve cellular function, and reduce chronic inflammation. Pre-clinical and clinical studies have shown promising effects of H2-rich water (HRW) on specific features of metabolic syndrome, yet the effects of long-term, high-concentration HRW in this prevalent condition remain poorly addressed.
Methods: We conducted a randomized, double-blinded, placebo-controlled trial in 60 subjects (30 men and 30 women) with metabolic syndrome. An initial observation period of one week was used to acquire baseline clinical data followed by randomization to either placebo or high-concentration HRW (> 5.5 millimoles of H2 per day) for 24 weeks.
Results: Supplementation with high-concentration HRW significantly reduced blood cholesterol and glucose levels, attenuated serum hemoglobin A1c, and improved biomarkers of inflammation and redox homeostasis as compared to placebo (P < 0.05). Furthermore, H2 tended to promote a mild reduction in body mass index and waist-to-hip ratio.
Conclusion: Our results give further credence that high-concentration HRW might have promising effects as a therapeutic modality for attenuating risk factors of metabolic syndrome.

Keywords: metabolism, fasting blood glucose, cholesterol, inflammation, oxidative stress, hydrogen water

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]