Back to Journals » International Journal of Nanomedicine » Volume 7

The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots

Authors Tang W, Fan J, He, Huang, Liu, Pang D, Xie Z

Received 21 March 2012

Accepted for publication 14 April 2012

Published 24 May 2012 Volume 2012:7 Pages 2631—2640

DOI https://doi.org/10.2147/IJN.S32029

Review by Single anonymous peer review

Peer reviewer comments 3



Weikun Tang,1 Junpeng Fan,1 Yide He,1 Bihai Huang,2 Huihui Liu,1 Daiwen Pang,2 Zhixiong Xie1

1College of Life Sciences, 2College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China

Abstract: Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSe-core QDs (MAA–QDs) were investigated. After incubation with different concentrations of MAA–QDs (0.043, 0.13, 0.4, 1.2, and 3.6 µmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA–QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium–mercaptoacetic acid complex (Cd–MAA) that is formed in the solution of MAA–QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd–MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles.

Keywords: genotoxicity, MAA CdSe quantum dots, cadmium–MAA complex, transformation assay, DNA

 

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.